$

GPO PRICE

CFSTI PRICE(S) $

300

Hard copy (HC)

FACILITY FORM 602

SUMMARY REPORT

MHD BOUNDARY LAYERS INVOLVING

W
- NON-EQUILIBRIUM IONIZA TION
™
2
% Principal Investigator: A, Sherman
é % Consulatant: E. Reshotko

:

prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
February 24, 1968

CONTRACT NASw-1586

'/1 /égc;oguu%ﬁ/ (THRU)

(PAGES) | (cOD!
C-99¢ 37

{NASA CR OR TMX OR AD NUMBER) (CATEGORY)

GENERAL ELECTRIC COMPANY
Missile and Space Division
Space Sciences Laboratory
P,O, Box 8555, Philadelphia, Pa, 19101




SUMMARY REPORT
MHD BOUNDARY LAYERS INVOLVING

NON-EQUILIBRIUM IONIZA TION

Principal Investigator: A, Sherman

Consulatant: E, Reshotko

prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

February 24, 1968

CONTRACT NASw-1586

GENERAL ELECTRIC COMPANY
Missile and Space Division
Space Sciences Laboratory
P,O. Box 8555, Philadelphia, Pa, 19101




ABSTRACT

The present report describes theoretical research carried out under
NASA contract NASw-1586 during the twelve months ending January 24, 1968,
Studies have been made of the boundary layer in a plasma in which the electron
and heavy particle temperatures may be different, The problem is formulated
from the viewpoint of multi-fluid magnetohydrodynamics (MHD), It differs
from earlier treatments in that the complete electron energy equation is
retained so that one must consider the plasma sheath in order to establish a
boundary condition at the wall on the electron temperature., In our initial
studies a two-dimensional, laminar, steady flow is assumed. We also assume
infinitely fast ionization and recombination rates so that the electron density
can be calculated from the Saha equation at the electron temperature.
Actual calculations have been carried out along a channel wall which is partly
insulator and partly thermionically emitting electrode. For the initial studies,
restricted to a non-emitting insulator, we used the method of local similarity
to solve our equations. All later studies have used a finite difference scheme
and the exact equations., Results obtained demonstrate that the electron tem-
perature can differ significantly from the heavy particle temperature and is

very dependent on the magnetic field, thermionic emission and current level,
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I. INTRODUCTION

Several attempts have been made to analyze the magnetohydrodynamic
boundary layer occurring in the internal flow of a compressible plasma, in
order to determine skin friction, heat transfer, and potential differences
between wall and external stream for both electrode and insulator surfaces,
The first such attempt was by Kerrebrockl’ 2. He considered the equilibrium
electrode boundary layer in a magnetohydrodynamic accelerator having
constant external static temperature and cooled electrodes., He argued that
in the immediate vicinity of the electrode the conductivity would be low be-
cause of the cooling., This would lead to considerable Joule heating of the
gas near the wall resulting in large temperature gradients and high heat
transfer rates, Kerrebrock's calculations bore out these expectations., It
was felt that these results were not realistic because the electrons would
not be in equilibrium with the heavy species. Accordingly, Oad:es3 made a
rough estimate of boundary layer behavior considering the electrons to be
at an elevated temperature. He found that the increased conductivity near
the wall over that found on the basis of equilibrium theory greatly reduced the
Joule heating. He found that transport of enthalpy to the walls by electrons
was enhanced because of theincreased electron temperature. He further
pointed out that when the electron transport of enthalpy is significant, there
is a considerably larger heat flux to the anode than to the cathode. In
Oates' analysis, the electron temperature was determined on the basis of
a simple energy balance rather than the complete electron energy equation,
and as a result no '"sheath' analysis was carried out,

In the above described analyses the Hall effect, ion slip, and electron
pressure gradient effects were neglected in the Ohm's Law. Finally, the
solutions were obtained by the approximate method of local similarity, and
did not allow for such things as finite segmentation of the electrodes.

For the insulator boundary layer an analysis has been carried out by
Hale2 who also used the assumption of local similarity, but did include the

Hall effect, Hale, however, considered the non-equilibrium effect by assuming
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a conductivity relationship 0 = 0 (j) rather than by accounting for the behavior
of electron temperature. This again obviated the need for an examination of
the ''sheath''., Nonetheless, this study did demonstrate the possibility of
enhanced heat flux due to nonequilibrium ionization, as well as temperature
and velocity overshoots,

The present study has as its objective a more refined treatment of
the nonequilibrium boundary layer development through the use of multifluid
magnetohydrodynamics. A set of conservation equations is written for each
constituent of the working fluid, These equations are in turn reduced and
combined to achieve a usable set of equations for a two temperature plasma -
one where the electrons may be at a temperature that is significantly different
from that of the heavy particles. The formulation is somewhat like those of
the two temperature treatments of Camac and Kem.p4 and Dix5 except that
their problems were generally nonflowing and noncurrent carrying, whereas
Joule heating and Lorentz forces are essential features of generators and
accelerators,

The first portion of this report formulates the equations to be used
in treating this problem and their boundary conditions. In the second part
we formulate the numerical techniques necessary for their solution. Here
both the finite difference and local similarity approaches are developed.
Finally, some solutions for problems of interest are presented and discussed.
The influence of the sheath, magnetic field, thermionic emission, etc. are

all illustrated by the solutions obtained.




BOUNDARY LAYER EQUATIONS FOR TWO TEMPERATURE PLASMA

Characteristic Quantities

To better define the physical character of theionized gas being studied,

layer study.

Gas stagnation temperature

Gas static temperature

Wall temperature

Electron temperature

Gas particle density

Electron density
Electron-electron cross section
Electron-neutral cross section
Magnetic field strength
Electron debye length
Electron-electron mean free path
Electron-neutral mean free path
Neutral-neutral mean free path
Ion-neutral mean free path
Ion-ion mean free path
Electron-ion mean free path
Boundary layer thickness
Electron gyro-radius

Ion gyro-radius

it is useful to establish typical magnitudes of the quantities of interest, Most

pertinent are the characteristic lengths since we wish to formulate a boundary

2000°K
400-2000°K
1500°K
1700-10, 000°K

1 -
10 9 cm 3
-3

1015 cm

5x 10-13 crn2

10-16 crnZ

20,000 gauss

2 x 10'-5 cm

.2 X lo-zcm

10-3 cm

lO-4 cm

- 2
103

-10 cm

2 x 10'2 cm

.5 x 10-2 cm
0,1-1,0 cm

1,5x%x 10-4 cm

-2
10 cm

We note that the electron Debye length is much smaller than all mean

carried out, 3

free paths and also smaller than the electron gyro-radius. We will therefore
assume a collision free sheath free of magnetic effects, Again, the boundary
layer thickness is larger than all mean free paths and gyro-radii, so we are
justified in pursuing a continuum-type approach the fluid flow problem, The

above estimates, of course, must be continually reviewed as the solution is



2. Assumptions

The formulation of our problem will be for a two temperature plasma

under the following simplifying assumptions:

1. Steady flow Y S 0

2, Laminar flow

3. No induced magnetic fields Rm =0

4. Plasma consists only of electrons, atoms (carrier and seed),

and singly ionized seed ions
5. Plasma composition determined by Saha equation evaluated at

the electron temperature

6. No continuum radiation losses

7. Collision free plasma sheath

8. Only thermionic emission

9. Neglect pressure differences normal to wall.

The general geometry of the two types of channels which will be of
interest are shown in Figure 1. The boundary layer on any of the four walls
can be studied,

3. Basic Equations

For the two dimensional boundary layer, and the geometries of
Figure 1, the basic equations can be written as follows,

Mass Conservation:

gi—(pun—g% (Pv) =0 (1)

Momentum Equation:

Longitudinal --

ou , du op . 3 3y JY BZ (electrode) (22)
Puse *PVSy TTax Ty (P oy -j B_ (insulator)
z Yy
Spanwise (Insulator wall only) --
dw dw d dw
3 - ; 2b
Pu ax+Pvay 3y (“8y>+JxBy (2b)




~

ELECTRODE (ACCELERATOR CATHODE
OR GENERATOR ANODE )

YOOI IO IIIIIIIN

ACCELERATOR
iy_wu

INSULATOR
INSULATOR
——

GENERATOR

®_ELECTRODE (ACCELERATOR CATHODE
OR GENERATOR ANODE )

(A) GEOMETRY FOR ELECTRODE BOUNDARY LAYER

ELECTRODE
—

"/ NSULATOR
L]

%

¢ . A

) ACCELER- - ELECTRODE
| ATOR —

L]

L]

7

RS SN S

\— INSULATOR

(B) GEOMETRY FOR INSULATOR BOUNDARY LAYER
N207-024

Figure 1, Geometries of electrode and insulator boundary layers in channel
flow devices
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Conservation of Energy (Static enthalpy form):

oh* oh* BE )

2
ol
7 <___au> +j (E -nu BZ) (electrode)
+ jE + y y ¥ (3)
x

X 3 2 3 2
pl{=— +{— +j (E +uB) (insulator)
oy dy z z vy

Conservation of Electron Energy:

g

oT 3 dn 3 3T 3 dn
e € € [

= = =2 = T
> kune ™ + > kuTe . + > kv'ne 3y + > kv ey

T
5 du dv o) e 5 k .
2 - +23T
+ne[ZkTe-{FI] <ax + 8y> dy [Keay 2 e eJeY

j (E -uB ) (electrode)
e y z

=E_j_ + Y
®x j  (E 4 uB ) (insulator)
e z z
z
ve an an
+3Pp K(T-T) L — clu—2 -Iv— (4)
e e m dx oy

S

These latter two relations can be rewritten, making use of the
Saha relation, as shown in Appendix A and B, The results are given below
for an electrode wall alone. The modification needed to study an insulator
boundary layer is quite straight forward,

Overall Energy Conservation:

T
dh_ | dh _ dug, 4y (2u 2+i EKBT+5ke.>
pu 3 pPv ay—-Pu " u+ u : i e Je

3T du
+i E +3E -1 S £ S'a—h+ S B -uS_pu —_—
IxTx T Uk T W ax T W3 3 FoVe Tax
N ¢ T om u u e uwdh _v3h
Vla -vzay-ne pJY z-ppmumdx -h ax hay




Electron Energy Conservation:
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Nt gpr—

-1 -1 3T
5 3P 3P 3 e 5Kk >
+ =k - + -— \K +=- =T
1.le[ZlTe I}lpu3.\ P dy dy e Oy 2 e e‘]eY
v
°s
:Exj +(E =uB )j +3p k(T-T )Z (6)
X e z e e e g m
X y s
To complete the formulation of our problem, we must conserve
current and satisfy Maxwell's equations. Thus,
Current Conservation:
Tej=0 (7)
| Electric Field Relation:
|
; VX E =0 (8)
Finally, the inditvidual species momentum is conserved by satisfying
a generalized Ohm's law,
Generalized Ohm's Law:
o
I - |88 E -8, (& -ue )] (9)
X n 22 2 e i x e vy zZ
+ +
(1+8_8,)° + B
o .
T- [0+8 ) (E B )= 8E | (10)
e i y z e X

Y (148 8)° = 8°
e 1 e

where the electron inertia and electron pressure gradients have been neglected.
Next, we observe that if we try to satisfy Eq's. (7) and (8) explicitly

we have for the two-dimensional problem the following relations:

Q3 dj
. v
= 3y =0 (7a)

and

~l



O E OE
X a 3
dy  9ox (82)

along with Eq's. (9) and (10). Now, even if we assumed the flow field, gas
conditions and electron temperature known, the above four equations lead to

a nonlinear "elliptic'' partial differential equation for the current stream
function. If this equation must then be solved as part of the system, one cannot
solve a boundary layer problem which is ''parabolic' in character. Further-
more, the effects of finite electrical resistivity of the plasma are such that

the significant variations in current density and electric field are not re-
stricted to a narrow layer in the neighborhood of the wall,

Accordingly, since we still wish to treat a boundarylayer type of
problem we must abandon hope of satisfying (7a) and (8a) exactly and look for
a procedure whereby they can be satisfied approximately. Such a procedure
is available if we assume that the boundary layer thickness is small compared
to the electrode or insulator segment lengths on the electrode wall.,

In the analysis of the inviscid problemé, one obtains jy(x) along the
electrode and Ex(x) along the insulator. The boundary layer problem can then
be handled by making the following assumptions:

1. Over an electrode segment j =j (x), E_= 0 for all y's,

Y Ve X

2. Over an insulator segment jy =0, Ex = Exw (x) for all y's.

With these assumptions Eq's. (7a) and (8a) are satisfied approximately and
one must then only satisfy the Ohm's law at every point within the boundary
layer,

Working with Eq's. (9) and (10) we can obtain expressions for jXEX,

JyEy, je , and je as is shown in Appendix C, Substituting these into Eq's.

x
(5) and (6) yield tKe following results:




Overall Energy Conservation:

dh A sh duw . du 2
PUuss TPV Sy T Bt o )T E Gy
5kT
d oT e ]
+—1 T K. + oa. i +oa. E
dy [i idy 2e < lJym 2 Xm>
2
j )
PR S AR * P +uB j
+ (0
! Beﬁi *eo 1-IpﬁeBi Z Ve
oT du
[S ah . e
-1 [uS1 Fp. -uS2 - +uS3 Jwaz-uS?,Pmum Em
oT du
[S3 ah u [+<]
- vS =2 _ u _u =
+Vsl o) M 20y ne( Jwaz pp°° @ dx
u oh _v dh
“h 3dx h y
Electron Energy Conservation:
oT dT
3 e 3 e 3
> kune - + > kvne 3y +<2 kTe + I)x
oT du
[S] ah -]
- —+Sj B - -
R R 52%x TSy B, - SPuLgs

-]

(

3 °T 3h 5 31
+(EkTe+I v\s €.s tn_|2KT_+1 pu—L—

10y 20y 2 o x
-1 oT
5] e
+pvsE8—t o2 [K - e+§5T (aj +a,E )]
y y e Oy e e 1 Ve X,
2
2 27 j
(88058 2 |y, - )
- 2 v 2 Ex
148 6
(145 8,) (148 p)° e
v

+3mn k(T-T )T
e e e’ .

(11)

(12)



4, Boundary Conditions

To complete the formulation, we must specify boundary conditions.
At the outer edge of the boundary layer we have from the results of channel
flow calculations

u (=) =u(x)

p (=) = p_ (x)

T (=) = T, (x)

T (=) =T_ (x)

«©

Along the wall we have
u(0) = v(0) =0
T(0) = Tw(x) or q(0) = qw(x)

To establish the inner boundary condition on the electron tempera-
ture Te’ we must consider the nature of the plasma sheath, The sheath
will be considered collision-free and free of magnetic effects. The validity
of such a treatment depends on the Debye length being much smaller than
both the electron cyclotron radius and the electron mean free path, Such
conditions obtain in the external channel flow but it is not clear that the
desired length ordering is appropriate at the wall. In fact, it can be shown
that if in the external stream the electron gyro radius is say ten times the
Debye length, then just a 25% reduction in electron temperature will equalize
the two lengths. Such a reduction may well occur in the boundary layer.
Nevertheless, let us now consider the ideal sheath.

Consider the surface at y = 0 (Fig. 2). The net current density in the
positive y direction is that due to electron arrival at the wall minus the sum
of the current densities due to ion arrival at the wall and electron emission
from the wa114. For the present problem where the only ions present are

seed ions, the net current density normal to the wall can be expressed as

) edo
kT
nee < Ve> e
j = - - i 13
(Jy)w p e n.eVi i, (13)




(a)

—>

(¢)

(d)

(e)

'
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Figure 2,

SHEATH
- —b

(a)

<@ |(b)

(d)
(e)
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current density due to electron

arrival at wall

current density due to electron
arrival at outer edge of sheath

ne<V >
(S (S

4
current density due to ions entering
sheath (all these ions reach the wall
since they are accelerated by the
sheath drop)

n . ev,
i i

electron emission current density i
w

net current density j

Contributions to current density at wall



where n , n, refer to the number densities at the edge of the sheath (ne =n,
e i

for singly ionized ions), where

8kT
e'\JV
<V >
e Tm
[
kT
eW
V., =
1 m

T.. being the electron temperature at the sheath edge, and where the emission
\%% .

current density iw is dependent on the surface temperature and work function
of the surface. This gives one relation between the electron temperature at

the sheath edge Te and the sheath drop, A¢.*
w
A second relation is obtained from continuity of electron energy flux

. 4
at the sheath interface between continuum and molecular descriptions .

Thus, e
oT 5 Je ne<V > kTew e
K S += —L kT :<ZkT +elA¢pl>——g—e -i —
e\dy 2 e e e w e
W w W
(14)

where € is the average energy of a thermionically emitted electron as it
crosses the sheath interface, and will be taken equal to (ZkTW +ebo).
Between the two relations (13) and (14) we have the sheath drop &¢ and the

mixed inner boundary condition on T .
e

* The anode sheath drop is slightly less than the difference between plasma
and floating potentials while the cathode sheath drop exceeds the afore-
mentioned potential difference.
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111, SOLUTION PROCEDURES FOR NON-SIMILAR BOUNDARY LAYERS

1. Equations in Transformed Plane

The boundary layer equations so far presented are a set of nonlinear
partial differential equations dependent on two space variables, It has been
common at this point to seek a similarity transformation that would reduce
the dependence to just one independent variable. Such a transformation has
in fact been carried out, While complete similarity is not attainable, by
suitable approximations a form of local similarity (the longitudinal distance
appears as a parameter but not in differentiations) can be obtained, While
clearly inadequate for the regions of finite segmentation, the local similarity
procedure allows solution of the boundary layer equations from a stagnation
point or from a leading edge up to the region of segmentation, The solution
may then be continued by a finite difference procedure in the plane of the
transformed variables with the longitudinal step size determined by electrode
length and spacing,

The new independent variables are those of the Levy-Lees trans-

formation,
x
£ (x) :S (Pp) u dx
o
y
uco
n(x,y) = \/— j pdy
2¢ o
so that
2 on) w2 en 2
ax (p“ ruao ag nx an
o) puco o]

and where




Equations (1), (2), (11), and (12) become

Continuity:
of' 3V
Zg—a?‘L%_n*f':O (15)
Momentum:
du
of A 28 ® 2 3 df!
| ——— - -f! —_ —_ 16
Z:f,fag V3 SURrT: [g-1 ]+an <:, 3n> (16)
Energy:
dh 26u_ du
. og v dg | 2¢f'g ® @ © ‘
268 St Vgt b TR, & (1-1S,) f'g
u2 2 T
3f! d d © 3 3
5 *’(af>+§_[g ag]“LTwa ["56]
© n n R N I n n
26 KT «a_j 26 kT o E
L5 = 'Y= 38 .5 = © ¥o 29
2 (Pj.l)r umeTae an 2 (p[..l,)r umeTwe an
2 1 3 1
v EKT o) j 2§ kT al, E_
+_5. © © 6+§- © © 6
2 (Pj.t)r umeTme 2 (P[.L)r u_ Cmee
2 2
oE j 2 2
) 2t 1 X . Ve (1+BeBi) +Be .
cCT 2 o 1
p = (PH) P u, 1R B B P
26B j  f IS.T (2¢)
€ Jy T T, (26 56

+ (1-1S.) - gf!
(pp)r Cmepu“m 3 CpT&pw 14

dT
IS T V «
] 17e_ . 20 Isl(zg) I o6 +Isz(zg) ” 3¢
pwcpToo an pcnc Tm pco ag
+ IS,V LoE IS, (26) <dT°°) 20 2¢1In_ Y
p_ Bon " o_T, \aE C T.P, OF
(17)

(continued on next page)
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1 I T
) n, Vé& ne(2§) d . fg
= -
Cmepm N c sz d§
p ® o

Tun (2¢) du

- gf‘
pCme d¢
Electron Energy:
. (PH.T u
3 3 T S T ey ®
_.k —
> ne+ 2k . 6+1 ) T
o J
dT . r
e _
f'g ot 3 ]
+ —_ - =
2¢€ T P& S2 _ZkTe 6+1I
e -]
@©
dT 1
o8 L ,pflg = | (3
+Van+2gT aE > KT _ 6+
<] J [+

In j 28)B
neJyw( £) z

+ gf'
p(p“ )rpw Cmeum

(17

cont'd)

, 98 26
[ng 5e Vo,

2

(Pp) h_u_

re e [ngl_ag_
2§ o

@©

3 du
1) S3Peug g (PH) 1

2
P g Cp(Pu )r T

3
= I i B 'oa
+<2 kTe 8+ > S3JY zumf
[o 2] @

eco o] N 36
26 g o on

P u P u
@« 5 k © "o 5 k 3
- ==T j —(6a,)- 23T E — (fa.)
o)
g\/z—g’Ze eV, °n 1 g\/2_€'Ze e, X, 9m 2
(PH) u_ Loap
i |2xT g1 | —= || 22, v 28 _28fe =
e |2 e, 2t g og on P d§
2
j 2 2
2 g Ve [(Hﬁeﬁi) + Be]
= By 2t 2
= (148 eBi) (Hﬁeﬁi)
Tca Vs
+ 3menekTem g T_ -6 ES m (18)
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2, Finite Difference Form of Equations

Of the many finite-difference schemes that can be employed to solve
the boundary layer equations, the implicit procedure of Blottner (references
7 and 8) is adopted for the present study. Implicit procedures are less
likely to have stability difficulties as encountered with explicit schemes and
the truncation error is of higher order than in the explicit schemes.

The flow field is divided into a grid or mesh as indicated in the

following sketch:

U

® KNOWN POINT

n+l—¢ ¥ -
*_

n —¢ t

X UNKNOWN POINT

n-l-¢ *—

It is assumed that all the dependent quantities are know at the grid points in
the mth column but unknown in the (rn+1)lCh column, In the implicit scheme,
the various derivatures are replaced by linear difference quotients and the
partial differential equations are evaluated at (m + -;-, n). For example,
consider the functions M (§, 1) and N (£,7n). The difference quotients at
this point (m + %, n) are

M
oM _ m+l,n m,n

38 Ag

) /2 An

-M
oM (MTL) * (Mm+1,n+l m+l,n-1
on 2

16




(M - M

m, n+l m,n-1
where M"7 = ZAn
2 M M 2M +M )/ (A )2
SM n‘n+( m+1,n+l m+l,n m+l,n-1 n
a 2
on
-2M + M
m,n+l m,n mn-1
where M = 5
nn (An)
2
oM - M (Mm+l,n+l Mm+1,n-1)
°om ) T m 2An
oM 3N 1
an  on - 4An [ M‘r) (Nm+1,n+l ) Nm+l,n-1) * N‘r) (Mm+1,n+1 -Mm-}-l,n-l)}

Product terms are written
M =M

M
m,n m+l,n

MN:-I—

M
2 [ m,nNm+1,n +I\/Im+1,nNm,n]

In all of the above equations, terms of order ( A§ )2 and ( A‘n)z have been
neglected, To preserve the linearity of the difference equations, terms of

the following form are approximated as

17




M -M +
M 1 ON m+l,n m,n
N—a—e— -[Nm’n-!- 2—<—ag>mnA€ +..][ AL ]

N (M -M
m,n m+l,n m,n

Ag

)

I's

When the difference quotients and terms of the above equations are

substituted in the boundary layer equations (16) to (18), the resulting linear

difference equations are written

A W +B W +C W -D (19)
n n+tl n n n n-l n

whose quantities are the matrices

- /

m+l, n

W, = Em+l, n

Lem+l,n
A, © o ] B, B, © c, © ©
Ap = | Ay Ay Ay |'Bn T By Ba Bas »Cn = [ G251 C22 C23
© O Ajjzl By PBap Bas O O Cg4

Py

D,=1|7P:

D,y

The top, middle and bottom lines of the matrix equation (19) are
respectively the momentum, energy and electron energy equations. The

continuity equation is invoked to calculate V knowing the values of f' ’
. ' m+1l,n+l
an

df .
m+l,n m+1l,n-1

The elements of the matrices A , B , C and D are given in
n n n n

Appendix D,
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At the wall we want a linear B.C. to fit in with out linear system
of finite difference equations. Thus,

w, =Hw_ + Fw_+ h W =

1 2 3 (19a)

D 0

m+ 1l,n

| B— —_ - — —
We note that f' = 0 at the wall (n=1), Also, Twall = const, so g = TW/Tw(g) =

gw('i). For 6 we have problems, We have two equations to work with, each

containing 6 and A¢, and have to eliminate A¢ between them. So

- |A<9|

n e<V > kT 8
e e

e w
+1i = = e ® n
J = -
Yo w 4 e
and
e)
e e oy 2 e e e
® w v ©
W
-e|lAe l
n < Ve> kT 6
W © W
-— T
X " e <2k - eAcp)
alternately,

C 2T
pPtee (be) L (Zle Lede \,5( ) 4
\&7 w\T 8w kT 2\Ve | "w KT_
ky2¢ W €. € y/w
L on —_—=
JY{: 1W- 2+ el Ao I eW m
W kTe

Next write

56 ) -391+462-93
on 24n

W

Then we have
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or

AC (Pp) u (-36.+46.-6.)
. elae| \ TTp T re 1772773 s
<JYm+ 1w> <261 + >_ + >

kTe K v2e 24m
W
2T kT e1
4 *® + el en __f:n__ 20 + _e_lﬂl_
wi\T gW kT e m 1 kT
e e w c e
- -] [- -] ]

st
We find | A¢ | from the 1 of our original two equations

) e|AGP|

kT @

so,
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treat 61 in / and ''a'" terms as em

ACp(pp )ru&e

3AC (PK) u_e g
j  (2+ln a) + Ziw + -3 je
Yy

Zk\/Z?An

S

8

Zk\/;g— an

This is highly non-linear in 6 L Since we wish to deal with a linear system

(2+ Ina) =

+ i
3 W

, 1

. while 8 L 2]

2A CL(pu )rum e

kv2¢ an

e

2

, B 3 in linear terms

are 6m+l 1 etc., Actually, we must express our boundary condition at
m+ 1/2,n, So,
+
6r‘n+l,l+6rnll - B 6rn+1,2 em,Z LB [ 6m+l,3+6m,3j|+c
2 T2 2 3 3
where
2A 1Cp(p;.l,)rume
5 k /2 (&n)
5 =
30 . C (pu) u_e
"2+1na] + l p r -% <je > 2
2k V2§ An v/
2A . C (Pu) u_e
- L p = /R (20)
kVzg (An)
B--+g (21)
3 4 2
Zngw
C = i
T 1W/R (22)

and where
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ne = ne (gl’ 61) 3 (Je > = je (gl’ 8 1)
w v/, ¥

Also all £ dependent quantities, jy y U, Te , are evaluated at m + 1/2
@©

@
location, Now 61 will be treated as an iterable quantity, That is, for first
: - ern 1+ em+1 1
calculation take Gm 1’ and for subsequent iterations take 22 . .
L
Finally,
9 -B_8 + B -
i1, 1 - P28 me1, 2 T B30, st [Bzem,z+B39m,3 81t C
or
=B
8 1,1 - 82%ma1,2 T Ba% 1,37 By
Then
0 0 0 0 0 0
H =] 0 0 0 F = 0 0 0
0 0 B2 0 0 B3
0
h = g,
(23)
B
4
= - d
where g, TW/T°°rn+1 and Tw constant, Tm’nr1+1 corresponds

to Tw(ﬁ) evaluated when § corresponds

to m + 1 location,

22




3. Determination of External Conditions

Analyses of complete MHD generator channels are generally one-
dimensional, The variations of flow and electric quantities predicted from
such analyses are usually continuous since they ignore the details of any
finite electrode structure. Such calculations may be considered to repre-
sent what goes on in the core of the generator channel but do not necessarily
provide outer "inviscid" conditions for a boundary layer analysis,

Consider for example the problem of determining exterior conditions
for Jy and Ex along a segmented electrode wall (Figure 3), The uppermost
sketch in Figure 3 depicts the results of one dimensional flow calculations
for a non-equilibrium generator. Numerous such calculations for constant-
area, segmented-electrode Faraday generators using noble carrier gases
and alkali seed gases have been carried out by Highway and Nichols
(reference 10). The portion of the continuous current distribution assigned
to a given electrode pair must now be distributed, The current .streamlines
within the cell boundaries for a given pair of electrodes are estimated from
the results of Hurwitz, Kilb and Sutton (reference 8) as recently modified
for non-equilibrium conductivity (c=0 | J|)) by Sherrnan“. Over an
electrode Jyw (x) is according to the solid curve shown while EXm (x) = 0,

Over the insulator portion between adjacent electrode segments J, (x) = 0

Vool
and Exm (x) is given by the dotted curve,

It is implied by this kind of argument that the characteristic thickness
for accommodation of electrical quantities to the discrete electrode structure
is large compared to the viscous and thermal boundary layer thicknesses.,

It must be realized that the relative scale of these phenomena is inverse to
some power of the appropriate magnetic Prandtl number. Since for the
expected working fluids Prm<< 1, it is felt that a procedure as described
by Figure 3 is justified for the electrical quantities.

In the absence of better information, the external velocity and enthalpy

distribution were taken to be the same as at channel centerline (one-dimensional).
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4, Initial Profile - Local Similarity

The calculation can proceed by finite differences over a finitely
segmented electrode wall, However, an initial profile will always be needed,
If the boundarylayer development is assumed to begin from a sharp leading
edge the profiles at £ = 0 will be similar. If we assume, on the other hand,
that it develops from a nozzle then an initial profile can be obtained by
assuming local similarity., That is, Blg = 0 and § = parameter so that we
only have to integrate over 7.

In the final section of this report we will describe some locally
similar solutions as well as a finite difference solution starting at a leading
edge. The former is convenient as the calculation is simplified so that

many different cases can be studied,
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Iv, EXAMPLES AND DISCUSSION

1, General Description of Example

The channel flow which we have taken as a basis for our initial
boundary layer calculations has been developed by Les Nichols and is his

case #001351 dated Nov, 16, 1966, He chose the following conditions for the

channel flow.

t
K = 0,700 Seed = 0,01 p°=2x105m—%9—s-
m
(e} (o]
T =2000 K M = 0,500 B = 10,000 gauss

Argon + Cesium

The £ variation of velocity, gas temperature, pressure, and density
can be taken from his calculation. However, for the subsonic case the §

variations over the first and second electrode pairs are slight, so we have

assumed them tc be zero., Thus,

u_ = 395,61 meters/second
T - 1920°K
=]

2
p = 164,000 newtons/m

3

_ = 0.5Kg/m

1/4

In addition we have taken 4 = g— and PR = 2/3, For the generator con-
sidered by Nichols the first electrode would be approximately 34 inches from
the nozzle throat., This would correspond to a value of £ = .01, and the
locally similar solutions have been carried out at this location. The finite
difference solutions, on the other hand, have been started from a sharp
leading edge at £ = 0. The geometry and dimensions are shown in Figure 4.
For the electrical quantities and Te we cannot use the channel flow
values directly as they assume an infinitely fine segmentation whereas we
are calculating a boundary layer with finite segments. Estimates obtained
from several analytical calculations show that Tew will vary by only several

degrees over an electrode for the case cited above, Therefore, for these
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initial calculations we have assumed T, constant as well.
[==]
Finally, we have allowed j and Exm to have the following average
ym

values at the channel centerline.

. 2
j = =75 amps/m

©

EX = 200 volts/meter
x

These values are actually not representative of any specific channel design

but rather were chosen to illustrate the phenomena caused by currents and
axial electric fields, Using these, { distributions were assumed using
constant property channel flow solutions including Hall effects as a guide.
These, as well as the B field and thermionic emission distributions chosen are
shown in Section IV 3,

2. Locally Similar Solutions on Insulator Wall with B = 0

Before attempting the more difficult problem of a finite electrode in
an insulator wall, we have obtained locally similar solutions when B = 0 on
an insulator alone. Such solutions, aside from their obvious usefulness,
can also be used as starting profiles for the more complete finite difference
solutions,

Our basic equations reduced to local similarity form are shown in
Eq.'s (17), (18), (19), and (20) of Appendix E. They have been solved by
numerical integration (Runge-Kutta) using an iteration scheme on the unknown
wall values of 8, g’, and £, The principal difficulty was the large value
of 8’ at the wall which demanded a very fine interval for integration. A
computer program was written to carry out this solution and is shown in
Appendix F,

Solutions obtained for various wall temperatures and { locations are
shown in Appendix E. It was particularly interesting to find the electron
temperature to differ so widely from the gas and wall temperatures even
though in the free stream they were assumed equal, Since there was no
current flowing or electric or magnetic fields applied, the conclusion one
must draw is that the gradients within the boundary layer and wall sheath

boundary condition are the causes,
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3. Boundary Layer Over Finite Electrode Segment with B # 0

In order to carry out the finite difference solution we had to establish
a method for the solution of Eq's. (19) along with the appropriate boundary
conditions. They are in a form identical to Blottner's so that his calculation
procedure can be f0110Wed8. Due to the special form of the equations an
algorithin exists which makes digital solution quite efficient. The vectors

Wn and Wn+1 may be related by

fl
W =E W =
n n'ntl " Cn W lg] (24)
6
where
- -(A2+C2F)
2 B2+C2H
D -
o - 2 CZh
H
2 B2+C2
and
-A
E = =

3<n< N-l (25)
D -C e
_ n n n-1
°»~ B +C E
n n n

-1
where we must remember that En is a 3 x 3 matrix and en is a three com-

ponent vector,

Knowing the iterated solution W_ at § , the solution at ¢ is
n m m+1
obtained as follows:

a) Evaluate the quantities BZ’ B3 and C (Equations 20-22) using

values of the number densities and Gn from the prior step

(n =0, £ = gm)'

b) Knowing H, F, and h (Equation 23) evaluate E_ and e_ after first

2 2

evaluating the components of AZ’ BZ’ C2 and D2 from Appendix D,
c) Continue outward through the boundary layer evaluating En and e

at each step 3 <n s N -1,
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d) As the outer edge of the boundary layer is not at a definite
location, the matrix En and the vector e are computed until
f', g, and  become fairly constant. The conditions from
equation (24) are
- E.
i

2

1-E _-E
il i 3

-e < € i=1,2,3 (26)
where the ‘i are small quantities to be determined from
experience,

e) Once the values of En and e are calculated throughout the boundary
layer, the computation then shifts to the determination of Wn
starting at the outer edge with all WN values equal to one. The
calculation is simply accomplished using eq. (24). It is continued
in this manner to the evaluation of WZ; then W1 is determined
from Eq. (19a).

f)  With f'm,n and f‘m+1’ n known, the transformed normal velocity

parameter V is determined from the continuity equation (15).

The derivatives of the continuity equation are evaluated at the
1

) 1
point (m + 3, n -3 ).

2

_ £ L 1\(: \
Ventl/2,n " Vm+1/2,n-1 " A"( at "3 )\Imi,n” ft1,n-1

con (F2 - 3) (n* )

g) To iterate, steps (a) through (f) are repeated evaluating A, B,C,

Then Eq. (15) reduces to

D, E matrices and D, e vectors using values of all quantities (ex-
cluding f', g, and @) that appear in these expressions evaluated
atm + %, n. That is, we work with average values at (m, n) and
(m+1,n). For the initial calculation values at only (m, n) were used.

h) Completing the solution at § we then proceed to § and

m+1 m+2

repeat all of the above.

The above procedure has been programmed for solution on a high
speed digital computer (GE635) using Fortran IV, The flow chart is shown
in Appendix G and the program listing in Appendix H.

30




As noted earlier initial calculations using the finite difference technique
have been carried out from a sharp leading edge. The distribution of imposed
conditions is illustrated in Figure 5. The magnetic field was not taken to be
uniform in §, but was instead allowed to rise from zero to its final value before
the first electrode. Due to computational difficulties the emission could not
be taken as a step function, but was instead represented by a smooth but rapid
variation to its final value on the electrode., The current was brought up grad-
ually to a peak at the downstream edge of the electrode, This is the expected
form of the current distribution over a cathode. The current and the emission
were brought back to zero smoothly but rapidly and together, Next, the
electric field was introduced rapidly and then allowed to fall off gradually as
the second electrode was approached,

Some of the results of our calculations using the above inputs are
shown in Figures 6-10. For the hot wall case studied the voltage drop
across the boundary layer was small. Some values at several £ locations

are presented in Table I.

3 A‘psheath A(pB.L. AV (volts)

0.95x107° .772 .011 .783
.180 . 676 . 013 . 689
.189 .358 .015 .373
.198 . 381 .019 . 400
.252 . 972 . 162 1.13

. 280 . 994 . 300 1,29

. 320 1,05 . 350 1,40

.333 1, 04 . 547 1.59

.337 1,06 .567 1,63

.370 . 940 . 679 1,62

Table I. Boundary Layer and Sheath Voltage Drop

The velocity and heavy particle temperature profiles were relatively
uneffected for the case studied. The heat flux was influenced somewhat more
due to changes in d Te/ay and n_. Values at seveal § values are given in

Table II in watts /cm?2,
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0T kT

I3 K% Ke aye n_ se (el) qTOT.(watts/cmZ)
0.95x10'3 12,6 .041 .113 12,7
. 180 9.16 . 039 . 015 9.21
.189 8.97 .070 .053 9.09
.198 8.75 .023 .115 8.88
.252 7.88 2,00 4,52 14.4
. 280 7.91 2,28 5,29 15.5
. 320 7.91 2,65 6.10 16,7
.333 7.85 2,32 5,37 15.5
. 337 7.95 1.85 6,10 15.9
. 370 7.75 .570 1,78 10.1

Table II, Component of Wall Heat Flux

Also, it may be of interest to note the boundary layer thickness in
physical dimensions, Compared to an electrode width of ~1,4 cm we have
a maximum boundary layer thickness of ~ 10'-1 cm,

From these results we can make a number of significant comments
as to the quantitative effects of a magnetic field, thermionic emission, net
current flow, and axial electric fields on the boundary layer . First, we
see that introducing a magnetic field substantially lowers the electron tem-
perature at the wall, This is caused by the lowering of Ke by the factor
(1 + B: ) which in turn has a profound effect on the electron temperature
boundary condition such that O'W is much larger. In fact, the electron tem-
perature is lowered enough so that the electron Debye length approaches the
electron gyro radius at 10,000 gauss., For stronger magnetic fields it will
be necessary to allow for magnetic effects in the sheath,

Next, we introduce thermionic emission before any net current is
drawn., As shown in Figure 6 we see that the electron temperature at the
wall rises rapidly over the initial portion of the electrode. Again this
behaviour is caused by the modification of the electron temperature boundary
condition. It is also interesting to note that an overshoot develops in the

electron temperature in this region for the same reason.
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As the level of net current passing through the boundary layer is
increased (to a maximum equal to the emission assumed) we discover that
the electron temperature at the wall no longer is increasing rapidly. This is
again related to the boundary condition where (iW + cho) appears and on a
cathode they are of opposite sign.

As the electrode is traversed we see, from Figure 7, that the over-
shoot becomes substantial, Aside from the influence of the boundary condition
this arises from the Joule heating due to the current, The related electron
density, Be, and plasma conductivity profiles are shown in Figures 8,9, and
10,

At the end of the electrode the current and emission are reduced to
zero rapidly and simultaneously with no significant effect on the profiles.
Next, the axial electric field is introduced rapidly and sustained for some
distance before falling slowly to a low value. Due to the energy-input (jXEX)
associated with this field, the electron temperature profile becomes thicker
although the peak electron temperature is somewhat reduced from its
maximum value at the end of the electrode.

Finally, as Ex is reduced the boundary layer growth falls off. At
the next electrode one would expect it to resume again. In any event, the
electron temperature boundary layer thickness has grow to perhaps 4 times
that of the velocity boundary layer.

As noted earlier, the electrons contribute to the heat flux somewhat
in the electrode region, It should also be pointed out that, for the case
studied here, the heavy particle temperature profile also develops a slight

overshoot,
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V. SUGGESTIONS FOR FURTHER WORK

The initial results we have obtained have been significant in that they
demonstrate important effects in a quantitative way. They however apply
only to a boundary layer starting from a sharp leading edge and extending
past one cathode segment.

To extend the present calculations we should first examine more
carefully the numerical difficulties found, The primary problem was a
tendency for the electron temperature at the wall to oscillate with increasing
¢, thereby requiring a very small A{ and some iteration. Such small A§'s
make extensive calculations very time consuming and expensive,

Additional calculations should be made over the anode wall as well
as over the insulator wall normal to the applied magnetic field,

Any refinements of the sheath that can be fitted into the present
framework should be made. Also, one should reexamine the assumptions
relative to the jym and Exwas obtained fromthe inviscid solution and how this
solution would be revised by the boundary layer solution we have found.

A more extensive revision wouldinvolve reformulating the problem to

allow for finite recombination and ionization rates.
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APPENDIX A

Overall Energy Conservations for an
Electrode Wall:

. 2
3 h* dh* 3 3u 3
PR OV Sy T “(a'y'> Ty 9y
+ _]xEx + iy (Ey - uB) (A1)

The heat flux vector is assumed to be of the fol-
lowing form.

*
= = K. Vv .
q=Z q, where q, K, 'I'.l + pihiy«l

Now, let us express h* more explicitly.

Lol T .
h_pipih‘; h_Zm,+m
i i
so that
+
oo ta skt Pesar Fs kT
P ’2 m, p 2 m p 2 ms
+
Pe 5 kTe Pe I
+ —= = + _—
P 2 m p m
e 8
or
n
h* = h + — I
o
We can rewrite the heat flux vector for s as follows
2
m n
_ i i
9; = KT+ mnh Vi + ——— L V;
so that
5 kTe
= LKV -
4 i iT+mene2m Xe
e
5kT
= -EKVT - i
P Je

Then, the overall energy equation becomes

2
dh dh 3p du
pu ax+Pv ay=“ax+*‘(§§)
3T Sk'I'e

+a— LK, = +—<5—
oy \{ i oy 2e Jey

X X
- n n
-pul%(’f‘)-pvlg%(-p—e) (a2)

Next, let us write

d (e o Te S ne
pu[a—; ?)-+vaay p—=I u 3%

3
by R -ne(uée+x ée)]

3y pax  p 3y

and the energy equation can be rewritten as

dh dh _ 9p é_)
Pa I TRV Ay —u3x+“(ay
3 aT  SKT,
+6y ZK 5y+ 7e  Je + Ey
Yy
dn dn
+j (E -uB) -T|u —& +v —=
Yy Vv 3% oy
udp v 9
- udp, v 2P A3
Pe P 3x PaY) (A3)

and the last two terms are equivalent to the I
ions

w; I. term commonly included in the energy
equlation.

Next g};—‘ can be obtained from the momentum

equation evaluated at the free stream. Then

3u Su % _a_( éz) .
Pu 3x * PV Iy T -3x*t 3y \B3y +Jsz
and at =
dum 3p
Pt ax T ax * Jsz
3 du
. =i B - =
. . 35 Jy A pmum dx
and the energy equation becomes
du 2
dh dh _ (ég)
pu-a—-l~pv——ay --pmumu-——dx + U v
. K‘B"ESkT'+'E+E
dy \i i oy 2e Jey IxFx I
3n on 2p
- - e . v
I ju P) v IR ne (p T
v Bp) .
+ - A4
P 3y (A4)

Finally, we have to re-express the two last terms
on the RHS in terms of T,, T, u. Now, n, can be
obtained from the Saha relation.
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n_n, 21’!mekTe 3/2 el
n - 3 exp |- i1 | =S (Te)

s h e
The ratio of the original number density of seed
atoms as compared to the inert carrier will be

specified. So

-ng + ns

P=—
A

Also, assuming each species is a P.G.
p=Zp =k ['_nA+ns+ne] T +kn T,
or p knAT
Now, we wrile from Saha
ne2 = S(Te)ns

But from the definition of P

ns=l=’nA-ne
2 [P
n, =S5(T,) [P T ‘“e]
or nZ+S(T)n-I—)ﬁ=O

[o] 5
] 3
a
=] o
o o
1 1
W !
—— N
+
- o
+
7]
x|
»—1L*70 1%
wn +
[ TFUU
Nttt H 1]
£
=2
o
]
x|
o
w
Iv
o
)
~N

when S is very large, corresponding to nearly full
ionization, the above may prove very inaccurate
for numerical calculation. For this case, we ex-
pand the /~ _ and use

ne=E¥[l-§,Fs] when%?-g< 10;2

If we wish, we can algp write

-C,/T
3/2 2’ "e
S(Te) = ClTe e
where
ZfrmekT 3/2
C, = __Z__i
h
CZ = eI/k

on
Thus we can write out to begin with -a—-s- using
x

.S S PpS
ne- 2+ 1_*’_1(%r

and S(T,) directly above.

Now
dn aT
e.g ) dh +S dp
3 x 1 3¥x 2 3x 3 dx
where
s 2Pp
S. =8 3 + CZ l+ 2 ! ko
1 2T 2 2 aPp
e Te S 1+ kTS
SZ - 2Pp
2 4PE
kC T 1+ kTS
2P
83 =
4P
kT \/1 + _E'k'rs
Similarly
Bne-s aTe s 92(92_0)
3y "1 oy 2 3y \9dy

Accordingly, neglecting argon ionization the over-
all energy equation becomes

2h o 3h )
P 3 PV iy~ Pt Tk
2 5kT
du 3T e
22\ Z-
* “(ay) 2\‘: i dy Ze e ) E:x
3T
; e 3h dp
+ _]yE -1 {uSl 3% \.\S2 3x + uS3 an
3T
- 3h _(uldp v 2&)
* Vsl oy VSZ dy ne(p ax * p dy
(A5)

but the last two terms can be rewritten as follows:

Assume the overall plasma density, pressure, et al,

is that of a perfect gas (argon). Then

R See
p!pRT=p-€—h p:R h
P
Then
C
13 _ 1% 1an 17pldp
dx p R thpthx
- 123 1dp
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The overall energy equation is then
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But we know

we obtain Eq, (5).
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APPENDIX B

Consider Eq. (4) specialized to an electrode wall.

as before

e s T s b, d
5x 1 3x 2 3x 3 dx
?.i'i-.s .a_fﬁ - ch
3y "1 ay 2 oy
du , v
Also we have to reexpress — + —. Thus
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3 3
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and we as well replace %E from before

dp

dx
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- Jy Bz ) pccuao dx

@

Making all of the above substitutions into Eq. (4)
yields Eq. (6).

B1

Then we have,

(B1)

(B2)

(B3)

(B4)
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Aeeendix C
Eqg.'s (9) and (10) can be written as
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APPENDIX D

Momentum eq.:
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Overall Energy Equation
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Abstract

The present paper studies the boundary layer
in a plasma in which the electron and heavy par-
ticle temperatures can be different. The formula-
tion is from the point of view of multifluid magne-
tohydrodynamics but differs from earlier treat-
ments in that the complete electron energy equa-~
tion is retained. This requires a boundary condi-
tion on electron temperature at the wall, which is
obtained by considering the sheath, A steady,
laminar, two-dimensional boundary layer is
assumed in which the electron density can be pre-
dicted by the Saha equation evaluated at the local
electron temperature. The equations for flow
velocity, gas, and electron temperature are re-
duced to ordinary differential equations by assum-
ing local similarity and are integrated simultan-
eously. Solutions obtained along an insulator wall
show electron temperature distributions that differ
significantly from the overall gas temperature
even when the free stream is in equilibrium,

I. Introduction

Several attempts have been made to analyze
the magnetohydrodynamic boundary layer occur-
ring in the internal flow of a compressible plasma,
in order to determine skin friction, heat transfer,
and potential differences between wall and external
stream for both electrode and insulator surfaces.
The first such attempt was by Kerrebrock!» 2, He
considered the equilibrium electrode boundary
layer in 2 magnetohydrodynamic accelerator hav-
ing constant external static temperature and cooled
electrodes. He argued that in the immediate
vicinity of the electrode the conductivity would be
low because of the cooling. This would lead to
considerable Joule heating of the gas near the wall
resulting in large temperature gradients and high
heat transfer rates, Kerrebrock's calculations
bore out these expectations, It was felt that these

*Consultant to General Electric Company Space
Sciences Laboratory

El

results were not realistic because the electrons
would not be in equilibrium with the heavy species,
Accordingly, Oates? made a rough estimate of
boundary layer behavior considering the electrons
to be at an elevated temperature, He found that the
increased conductivity near the wall over that found
on the basis of equilibrium theory greatly reduced
the Joule heating. He found that transport of
enthalpy to the walls by electrons was enhanced
because of the increased electron temperature, He
further pointed out that when the electron transport
of enthalpy is significant, there is a considerably
larger heat flux to the anode than to the cathode. In
Oates' analysis, the electron temperature was
determined on the basis of a simple energy balance
rather than the complete electron energy equation,
and as a result no ''sheath' analysis was carried out.

In the above described analyses the Hall effect,
ion slip, and electron pressure gradient effects,
were neglected in the Ohm's Law. Finally, the
solutions were obtained by the approximate method
of local similarity, and did not allow for such things
as finite segmentation of the electrodes.

For the insulator boundary layer an analysis
has been carried out by HaleZ who also used the
assumption of local similarity, but did include the
Hall effect., Hale, however, considered the non-
equilibrium effect by assuming a conductivity re-
lationship ¢ =0 (j) rather than by accounting for the
behavior of electron temperature, This again obvi-
ated the need for an examination of the ""sheath''.
Nonetheless, this study did demonstrate the possi-
bility of enhanced heat flux due to nonequilibrium
ionization, as well as temperature and velocity
overshoots.

The present study has as its objective a more
refined treatment of the nonequilibrium boundary
layer development through the use of multifluid
magnetohydrodynamics. A set of conservation
equations is written for each constituent of the
working fluid. These equations are in turn reduced
and combined to achieve a usable set of equations
for a two temperature plasma - one where the



electrons may be at a temperature that is signifi-
cantly different from that of the heavy particles.
The formulation is somewhat like those of the two
temperature treatments of Camac and Kemp~ and
Dix” except that their problems were generally
nonflowing and noncurrent carrying, whereas
Joule heating and Lorentz forces are essential fea-
tures of generators and accelerators.

In its more general form the present formula-
tion is applicable to both electrode and insulator
walls of both accelerators and generators. The
present paper is more specifically concerned with
nonequilibrium boundary layer development on the
channel walls that contain the electrode segments.
These walls are made up of an electric insulator
upstream of the first electrode segment and have
insulator segments between subsequent electrode
segments. The calculations presented and dis-
cussed in the present paper are for the insulator
upstream of the first electrode segment and ahead
of the region of the applied magnetic field. These
provide initial boundary layer profiles for a later
study of boundary layer development over the finite
electrode and insulator segments. However it is
readily evident that these results apply to the non-
equilibrium boundary layer development over any
electrically insulated surface in the absence of
magnetic field.

II. Analysis

The formulation of our problem will be for a
two temperature plasma under the following
simplifying assumptions:

1. Steady flow ;T =0

2. Laminar flow

3. No induced magnetic fields R, = 0

4, Plasma consists only of electrons, atoms
(carrier and seed), and singly ionized seed ions

5. Plasma composition determined by Saha
equation evaluated at the electron temperature

6. No continuum radiation losses

7. Collision free plasmna sheath

8. Only thermionic emission

9. Neglect pressure differences normal to
wall.

The geometry of the wall along which the
boundary layer will develop is shown in Figure 1.

The basic equations are developed below in
boundary layer form.

Mass Conservation:

3

2
5% (pu) + a—y (pv) =0 (1)

Momentum Conservation:
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Overall Energy Conservation:
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s sh u u du.a

Vzay'e(plvz p Pty T
_E.a_}l_l.a_h) (3)

hox h 3y

The details of the development of the above
equation are presented in Appendix A, where the
Saha relation has been used at the electron tem-
perature to calculate the electron density.

Electron Energy Conservation:

aTe
e dy

3 Te
3 kume 3% +—2 kvn

3 °Te gh
+ EkTe+I u Sl 3% ‘szax

1 dy 2 3y
-1 -1
5 3p 3p ‘
+ne[2kTe+I] ;pu 3 x + pv dy
B 3Te 5k
oy e 3y 2e el
=E ) +(E -uB )J
x ‘e y z /e
x Yy
Ues
+3p k(T-T)E-m—s (4)

The details of the development of Eq. (4) are
given in Appendix B.

To complete the formulation of our problem,
we must conserve current and satisfy Maxwell's
equations. Thus,

E2
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Current Conservation:
7-3=0 (5)
Electric Field Relation:

TxE =0 (6)

Finally, the individual species momentum is
conserved by satisfying a generalized Ohm's law.

Generalized Ohm's Law:

et ¥
X
(l+ﬁef3-1) + B,
j(1+se/3.) E -8 (E -uB )J (7)
1 X e y z
j - ——F—— x

Yy  (1+8 B.)Z+/3 2
el e

I(1+Be;3.1) (Ey -uB )+ B.E_] (8)

where the electron inertia and electron pressure
gradients have been neglected.

Next, we observe that if we try to satisfy
(Eq's. (5) and (6) explicitly we have for the two-
dimensional problem the following relations:

3jx 2
5% 3y =0 (5a)
and
s E o E N
* = X (6a)
sy 3%

along with Eq's. (7) and (8). Now, even if we as-
sumed the flow field, gas conditions, and electron
temperature known, the above four equations lead
to a nonlinear "elliptic' partial differential
equation for the current stream function. If this
equation must then be solved as part of the sys-
tem, one cannot solve a boundary layer problem
which is ""parabolic"” in character. Furthermore,
the effects of finite electrical resistivity of the
plasma are such that the significant variations in
current density and electric field are not restric-
ted to a narrow layer in the neighborhﬁ of the
wall.

Accordingly, since we still wish to treat a
boundary layer type of problem we must abandon
hope of satisfying (¢ ) and (6 ) exactly and look
tor a procedure whereby tacy can be satisfied
approximately. Such a procedure is available if
we assume that the boundary layer thickness is
small compared to the electrode or insulator seg-
ment lengths on the electrode wall.

In the analysis of the inviscid problemé, one obtains
j (x) along the electrode and E_(x) along the insula-
tor. The boundary layer probl)é:m can then be
handled by making the following assumptions:

1. Over an electrode segment j_ =) (x), E_-=
0 for all y's. yoy
2. Over an insulator segment j =o, E_ =
1 y
Exm(x) for all y's.

With these assumptions Eq's. (5a) and (6a) are
satisfied approximately and one must then only sat-
isfy the Ohm's law at every point within the boundary
layer.

Working with Eq's. (7) and (8) we can obtain
expressions for j E_, j E_, jo_, and j, asis
shown in Appendi§ & glubystitu%(ing these into Eq's.
(3) and (4) yield the following results.
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Electron Energy Conservation:
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Boundary Conditions:

To complete the formulation, we must specify
boundary conditions. At the outer edge of the
boundary layer we have from the results of channel
flow calculations

u(=) = u_ (x)

p(=) = p. (x)
T(=) = T (x)
T () =T, ()

Along the wall we have

u(0) = v(0) = 0
T(0) = T, (x}) or q(0) = g (x)

To establish the inner boundary condition on the
electron temperature T , we must consider the
nature of the plasma sheath. The sheath will be
considered collision-free and free of magnetic ef-
fects. The validity of such a treatment depends on
the Debye length being much smaller than both the
electron cyclotron radius and the electron mean
free path. Such conditions obtain in the external
channel flow but it is not clear that the desired
length ordering is appropriate at the wall. In fact,
it can be shown that if in the external stream the
electron gyro radius is say ten times the Debye
length, then just a 25% reduction in electron tem-
perature will equalize the two lengths. Such a
reduction may well occur in the boundary layer.
Nevertheless, let us now consider the ideal sheath.

Consider the surface aty = 0 (Fig. 2). The
net current density in the positive y direction is that
due to electron arrival at the wall minus the sum
of the current densities due to ion arrival at the
wall and electron emission from the wall®. For
the present problem where the only ions present
are seed ions, the net current density normal to
the wall can be expressed as

e An
kT
Cw

s meVyo- iy )

where n,, n; refer to the number densities at the

edge of the sheath (ne = n; for singly ionized ions),
where

T, Dbeing the electron temperature at the sheath
edé‘é, and where the emission current density iw is
dependent on the surface temperature and work
function of the surface. This gives one relation be-
tween the electron temperature at the sheath edge
TeW and the sheath drop, &».™

A second relation is obtained from continuity of
electron energy flux at the sheath interface between
continuum and molecular descriptions4. Thus,

8T Je
K( e) +2 ¥ xr
e\ dy 2 e e
v edo
n <v> kT,
+elA-’Dl)c—4—c—e

= (2KT
e

w w

w o & (2
w e

where & is the average energy of a thermionically
emitted electron as it crosses the sheath interface.
Between the two relations (11) and (12) we have the
sheath drop Ao and the mixed inner boundary con-
dition on Te.

Coordinate Transformation:

The boundary layer equations so far presented
are a set of nonlinear partial differential equations
dependent on two space variables. It has been com-
mon at this point to seek a similarity transformation
that would reduce the dependence to just one inde-
pendent variable. Such a transformation has in
fact been carried out. While complete similarity
is not attainable, by suitable approximations a form
of local similarity (the longitudinal distance appears
as a parameter but not in differentiations) can be
obtained. While clearly inadequate for the regions
of finite segmentation, the local similarity proce-
dure allows solution of the boundary layer equations
from a stagnation point or from a leading edge up to
the region of segmentation. The solution may then
be continued by a finite difference procedure in the
plane of the transformed variables with the longi-
tudinal step size determined by electrode length
and spacing.

The new independent variables are those of the
Levy-Lees transformation.

X

£ (x) = J (Pu) u_dx
r
o

A
u

n(x,y) = p dy

J2E

*The anode sheath drop is slightly less than the dif-
ference between plasma and floating potentials
while the cathode sheath drop exceeds the afore-
mentioned potential difference.
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Equations ( (1), (2), (9), and (10) ) become
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R Y T (g -1 J+an<an
Energy:
dh
) ) 2Ef! =
26 28 L v 28 4 —a
¢ 3¢ on h d¢

2fu du

© U o)
™ —-(IIS)f _<5_77>

h
[+ -
2.2 2g ewa_i
t B sn |2 3n

an R n T,
~v2E kT 4 j
s 75 ey s
Y2 (on u CT e n
VZE kT &
2 (pp)rumeTme on
. J2E KT, 2y,
+ 3 6
2 (pu)ruprTme
V2E kKT a' E
5 e, 2 x,
+ =
2 (p“)ru&CpTwe °]
2
cE
N 2 ¢ 1 ¥
2 1+
cme (o) 0, u ﬁeﬁi
j2 2 52
Yy, (1+B.8)+8
YT T BB g
e 1
2¢B ), f'g
- = (1-1S.)
(W) .C T R, u, 3

r’pe

IS T (2¢) IST V
- 3 € Y]
gf' =5 - g8 I,
C,T.A 3¢ p C T 3N
4T
e
IS, (2¢) =
R Ll L v-auli,
IS_(2¢) IS,V
L2220 e BV s
[ 0§ e, on

1S,(2¢) [dT_ 2¢1In 3
§ 2 (_) gr -t 0 28

p T
® @

p o
Ine V%S_ ) Ine(Zg) dTm .
"CTp ' On 2 dg '8
P ®= CT p
p @ @®

In j (2&)B

e yﬂ z
_— f!
¥ P (PH) 0, Cme u_ g
Iumne(ZE) du_

— ]
ac 8

PCLT

Electron Energy:
T

(pp) e uw

(15)

3 : 3 @ ,_
ane+[5 kTe 6+I]Sl T 2€f 3t

]

3 (ep).h_u_
=S, |3 kT_ 6+1 T 21
dT
Sg f'g ~ =
+V S+ 28 T. €

3 3 du:o
- EkTeze+I 53&% d€ (P#)

3 .
+ (E kTe 6 + I) S3Jy Bzumfl
® )

2
Pu C (pu) T

== p 1 oe 3 ae>
i 2¢€g on <
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» 5 k
- o Te (6a,)
2e "e an 1
g»\/ZE ® ‘™
o u
» » 5 k 3
- = —T E -— (8 3)
gvZE 2 % % O T2
(P u) u
5 e e 28
+ne[2kT 1}9+I] Ttg 2&f Y

de

3 f! > 2

r v g% . 26fg 5| - . __0__2
fa = (148 B))

j_yi_ [1+8,80%+ 87 ]

+

a 2
(1+8 B.)
e i
'I‘ca Vg
+ SmenekTem g Te -8 Zs: m (16)

©

Nonequilibrium Boundary Layer Development Over
Initial Insulator:

Upstream of any electrode segment, Eq's. (13)
to (16) are simplified by assuming local similarity.
That is, we take
In the absence of currents, magnetic, and elec-
tric fields, Eq's. (13) to (16) become

Momentum:
(L) + £ =0 (17)

Overall Energy:

. ' u2 Te
£ 2 @
—_— ' + f l+ —_— I’ f” + Tyt
<pRg> g hm[ (7] T (x8"
SlTem Szfgg'
+ I\ ——— fg8' -
pao Cme pm
n
t oo fe) =0 (18)
P, Cme
Electron Energy:
2 kn (2wt _8+1)s
a9+ e fg 8'
® P

= 0 and treat £ as a parameter.

5
s )] [ w
| 2 x
* p CT g (Pp)u
» p e, ®
(19)
3nek - Vg o o
p C mes m g e—T g -
® p s e
@
d
where ( )' Sdqn

Boundary Conditions:

W
2Em n kT
’ c e, e,
8, = 5 X(Pu)}u V m_
m
s 3/2
x 2+ in 2Tm 6w

The viscosity-temperature relation is assumed
to be such that £ = g'1/4 and Fay's7 approximate
mixing rule is used to evaluate the electron ther-
mal conductivity parameter.

\ pKe 2 (Ke ) (20)
= = = p—_ K
cp‘p"‘)r R A*
where
Ke KS/KA*
K x lW(l-q)_Ks Qe ,me T
o4 KA* an mc Te
5/2
7T
7.5x 107 =
Ks ) T3/4
K, % 1 4 4
A 4Jln[55+A1+A2]
n
=-£
% n
1.24 x 1071 3/2
A - e
1 1/2
n
e
l.8x105Te
A = &
2 n 1/3

[

Eq's. (17) to (19) are three coupled nonlinear
ordinary differential equations that have to be
solved simultané&ously while satisfying two-point
boundary conditions. Such calculations have been
carried out on a high speed digital crmnuter.
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III. Example and Discussions

The nonequilibrium boundary layer develop-
ment over an initial insulator has been carried out
for argon gas (inert) seeded with 1% by volume of
cesium. The free stream conditions selected are

u_ = 395.6 m/sec

T, = Te_ =1920°K
p,. = 1.64 atmospheres
M_=0.5

The Prandtl number of the mixture is assumed to
be 2/3.

Calculations are presented for values of £ be-
tween 0 and 0.01. This would correspond to a
maximum distance of one meter from the leading
edge of a flat plate having the above uniform free
stream conditions and (o), = 4.5 x 10-5 _k
The results are tabulated in Table I.

m -~ secC
Table [

1" 1 sk

£ Bw fw Ew ew
0 0.9 .4598 . 0655 1. 0000
. 005 0.9 . 4596 . 0656 L7791
.010 0.6 .4257 . 1709 . 7194
.010 0.8 .4498 . 1030 . 7553
.010 0.9 . 4596 . 0657 . 7745
.010 1.0 . 4689 .0261 . 7940
.010 1.2 . 4847 -.0574 .8384

Typical profiles obtained at £ = .0l and
gw = 0.9 are shown in Figs. (3), (4), and (5).}
Here we observe that the velocity and overall gas
temperature profiles are relatively unaffected by
the electron temperature variation. Significantly,
however, we find that the electron temperature dif-
fers considerably from the heavy particle tempera-
ture. This occurs in spite of the fact that the
electrons are in equilibrium in the free stream.

There are several causes for the difference
between T and T. Most important is the fact that
the sheath boundary condition for an insulated wall
requires a large g—ye- Then T_ must be low at the
wall to allow T_.—~ T at infinity. Such a large value
for 2_e is necessary in order for the continuum
heat flux to equal the microscopic electron heat
flux at the sheath interface. The other cause for
differing T, and T arises due to the flow and over-
all gas temperature gradients and their contribu-
tion to the electron energy equation.

One consequence of the lowered T _is that the
electron density and electrical conductivity are
lowered near the wall.

* Changes in @, in the sixth and seventh places were
found to be necessary in order to obtain accurate
profiles.

t The profiles all approached one at infinity to with-
in an accuracy of better than one part in a thousand.
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These are shown in Fig. (6).

To illustrate the longitudinal development of
the boundary layer, calculations have been made
at several values of §. Curves showing {'', g', and
6 at the wall are shown in Fig. (7). Most notice-
ably, we see that aside from a rapid drop of 8
near £ = O that all three unknowns vary rather
slowly in the coordinate system chosen.

The influence of g, on the profiles is shown
in Figs. (8) and (y'. Interestingly, we find that
increasing gy, increases ;. In factatgy, = 1.2
we find B reaches a maximum of 1.016 at n= 2
before returning to unity at ». This establishes
the fact that the variations in g and f throughout
the boundary layer can even cause T, to rise above
its free stream value.

The total heat transfer to the wall may be
evaluated using the continuum description developed
in formulating Eq. (3). In general, it will consist
of the sum of the conduction terms for each species,
and the flux of the particles to the wall carrying
their enthalpy (both due to random thermal motion
and recombination energy). The latter will con-

kT
sist primarily of ; e_e je which represents the
flux of electrons carrying their thermal energy,
kT

and n, I which represents the flux of ions

s
carrying their recombination energy. For the
calculations presented over an insulator wall, we
have no current, je =j=0. As well, we have

neglected n. S lin Eq. (3) since for the con-
i mg

ditions being considered it amounts to less than 1%
of the heavy particle conduction. The electronic
heat conduction has been included, however, in the
analysis; but 2 check shows that it is no more than
2% of the heavy particle conduction. Singe the g
distribution seems little affected by the electron
temperature we must conclude that the heat flux
seems unaffected by the variations in the electron
temperature found here.

IV. Summa ry

In the present paper we have developed a
general procedure for estimating boundary layer
development for a nonequilibrium plasma. An im-
portant feature of the method is the separate
treatment of the electron energy equation subject
to electric and thermal boundary conditions ob-
tained through a description of the sheath.

Calculations made assuming local similarity
have been presented for an insulator wall that
shows that the electron temperature is much dif-
ferent from the gas temperature even though the
plasma is in equilibrium in the free stream. Also,
the velocity and overall gas temperature profiles
are little influenced by the electron temperature,
although small changes in the former cause large



changes in the latter. Specifically, small changes
in the wall temperature are shown to change the
electron temperature considerably.
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AEEendix A

Overall Energy Conservation:
ohx o 3bx ca(2Y. 2 o
M3 dy qY

= tovy op
+ ijx+jy (Ey - uB)

iy T ax

(al)

The heat flux vector is assumed to be of the fol-
lowing form.

q:z =
~ i

*
hizi

q.

~1

q. where ‘K. VT. + p
1 1 1 i

Now, let us express h* more explicitly.

PR - Sokl S,
e TR 2 m *m,
i i
so that
+
oo a5 Peskr BPos ar
P ZmA P st P 2 m_
+E__‘_,_ kTe + p8+ 1
P 2 m P m
e 8
or
Te
h* = h+ — 1
We can rewrite the heat flux vector for s as follows
2
m'n.
= - v .n.h.V. 11
Ei K.1 Ti+m1"1h1‘~’1+ Py Ii X.l
so that
5 kTe
= -z v 5
3 iKiT+mene2m Xe
e
5kT
= -ZKYT - j
i i Je

Then, the overall energy equation becomes

3h 3h 3p 3u\?
pu 3% + pv ay = u 3x +“<§v)
AT SkTe
* 3y "?Ki oy * T2 e

y

-puI__a_

ix (A2)

Next, let us write

n

9 e
pul ox (_

dn
(E -uB) -I|u —£ +v
y

dx
“re(pox

and the last two terms are equivalent to the I
ions

dn
+j €

oy

uop,

P dx —g—%)

(A3)

w; I term commonly included in the energy
equ‘ation.

Next g_pi can be obtained from the momentum
equation evaluated at the free stream. Then

RS- N
Pudx *PV Iy T -Ex* 3y (Bay )t iR,
and at o
dum ap
pmmdx=-8x+Jsz
3 du
@©
§§_Jsz-pﬂ=uw dx
and the energy equation becomes
d 2
3h 3 o Te (_a_g_)
pu 3% va—_y R, U8 Gx s y
5kT
3 3T
-— -— j +j E +j) E
+ay§1ay+ 2e Jey Jxny

(A4)
Finally, we have to re-express the two last terms

on the RHS in terms of T,, T, u. Now, n, can be
obtained from the Saha relation.
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nn
e

es (

2m mekTe

2
h

=5 (T,)

n

3/2
) exp [—

The ratio of the original number density of seed
atoms as compared to the inert carrier will be

el
kT

e

specified. So
.n, + nS
P =
n
A

Also, assuming each species is a P.G.
:Ep.l =k [nA+ns+ne] T+ kn T,

knAT

Now, we write from Saha
n % =S(T )n
e e'’'s

But from the definition of P

n_ = F’nA-ne
2 P
n, = S(Te) [P T - ne]
2 PpS _
or mn_ + S(Te)ne T R®T S 0
s s®  Pps
and n, = - 2 + ry + KT
_ S 4Pp 4Pp -2
or ng = > 1+ YTS 1 when kTS—> 10

when S is very large, corresponding to nearly full
ionization, the above may prove very inaccurate
for numerical calculation. For this case, we ex-
pand the v~ and use

=E’[ _P ] 4Pp . 19-2
e kT ! ﬁz's when gk < 10

If we wish, we can algo write

-C,/T
3/2 €
S(Te) = ClTe e
where
27™m kT \3/2
C:1 = —_t &
2
h
C, =el/k
dn
Thus we can write out to begin with ?E using
x
2
- _S S PpS
et T2V T T AT

and S(Te) directly above.

Now
dn 3T
€:s c s b, dp
dx 1 dx 2 dx 3 dx
where
S 2Pp
3 <, ] 2 kT
S =8 + e S
1 2T T 2 2 S 1+ 4Pp
€ e kTS
sz - 2Pp
2 4PE
kaT 1+ KTS
2P
S3 =
4PE
kT \/l + KTS
‘Similarly
Bne_s aTe_ a__h(_a__e_())
dy ~ 71 23y 2 3y \3y ~
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Accordingly, neglecting argon ionization the over-
all energy equation becomes

3ho o 3 s
pu x p"ay‘ pw"'udx
2 S5kT
: au) 3T e . .
=)+ =
* "‘(ay ?Ki dy Ze Je JxEx
3T
. e dh dp
+ ]yEy I [uSl 5% uS2 3% + uS3 an
3T
e 3h (2 % v 5_P>
TV Sy TS5y T telp ek T o3y
(A5)

but the last two terms can be rewritten as follows:
Assume the overall plasma density, pressure, et al

is that of a perfect gas (argon). Then
R Spop
P=PRT =p=h PR
p
Then
C C
1% _ 1_p, 13 17p1dp
P dx p R h2 x P R h dx
=13 14dp
h dx p dx
ud0 , v __udh vah oudp
P 3x p dy h 3x h dy p dx

The overall energy equation is then



du 2 Now we have as before
pu 22 wpv By = 4 (a“)
< T = - uua — s
y » H 3y.

ox 3 @ dx
Bne aT 3h dp
=85 - —— +S
5kT d3x 1 9x 2 3x 3 dx
+a—<EK oL, i J#i E_+jE
] i 1 9y 2e Ix®x y
y
T Bne _s aTe s 3h
- —= 2h dp 3y "1 ay 2 oy
I l:uS1 3% uS2 3 +uS3 ax
)
oT Also we have to reexpress é3+ =, Thus
+ vS < S sh (3 dp dx 3y
1 3y 2 3y "e\p dx
= (pu) + o= (pv) = 0
u dh v oh 3x P dy pv) =
-= 3- T T aio (A6)
h 3x h oy
and
dp duQB
But we know tobe=j B -p u ——. Then
dx y 2z ® o dx p(a_\i+_a_v>+u_§_2+v%2=o
we obtain Eq. (3). x y y
-1 -1
Appendix B du  dv uodp v p op 3p
—4+—=z-=—c—=-——=plu + v —_—
. dx dy p 3x p Qdy 3x dy
General Form of Electron Energy Equation:
dp
-l nv [1 KT +IJ + V- [ KYT and we as well replace In from before
e~ |2 e e e
d du
5 k . I . _E :j B -pu _m.
- — =T - - + v - = * .3 @
2e ede eJe] P X E e dx Y. 2 © dx
Making all of the above substitutions into Eq. (B3)
e e g e s

8 Appendix C
which we can rewrite as .
Eq's. (7) and (8) can be written as

. 3 _9- Sk
v <ne Y |:Z kTe]) v [ Kev Te+ 2 e Te'l e] j o= ——9—2——7 l (1+Beﬁi.) Ex _Be (E -uBz)
* (148 _B) 4B, Y

+p Y- v=Ex* .Je+3pek(’r-Te)EVe /mS

s o
j —_— (148B) (E -uB )+B E ]
y = 2 2 l el y z e x_
+ ;I V3,17 ) (B2) = (148 _B)"+8,

using the 2nd relation to replace (E_- uBz) in lst
In boundary layer form this can be simplified to 4

we get
T dn 3T
3 e 3 e 3
2 kune ax ZkuTe ax | 2 kvn d i = (Y E ﬂeJ
x 1+Beﬁ,l x, 0y,
3 ane 5 du  dv
+ = —+ = -+ —
7 T, 5t o, [ ~KT_ +1 <8x+ ay) and
B
2 e .
3T ‘ s =T - E
= e, Sk, . JxEx 1+8 B. By 1+ B, Jy x
- K + T j =E j ei ® e 1 ® ©
oy e Jy 2 e ee x'e l
Y x 0
14
‘s j =OwhereE #0
+(E -uB )j +3pk(T-T)IZ—2 Iy x
Yy z ey e [ l'l"ls ® ©
dn d3n E =0wherej #0
- —< . ) x Yy,
Iu 3= Iv 3y (B3) '
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. g 2
]xEx T 148 B, IE:x
e i

e
Next, solve the 2nd of the above eq's. for E

] 88l 8,

E = - E + uB
y o (1+8 8) BB x "7z
e i e 1 o
Then
2
j 2 2
v, [(weﬁg +8 ]
JE =— | ——Fa— + uB j
yy © Hﬁeﬁi 2y
Now, we need an expression for j andj . This
we obtain from ex ey
Bxj
-\le =d N Bi. B
z
Then
Bi.
o=, - Bj =j -B8j
e X BZ z’y iy
BB
1 .
= + = +
IR B
y z
also as before
P S
Ix 1+8 B x o Jy
el o =<
So that
o8B
o (] () -
+ 1+
e, v, | TBE BB/ “x
or
=2 +2_E
Je lJy 2 x
y @© @
then
E = E - j
X Je X Ix Bi]y ‘Ex
e X £ » ©
0
or
o 2
E  —
x Je 1+8 B Ex
» o x ei E

and

[a-880%+87]

(E_-uB)j =
Y °y o (1+6,8)° &
B
- € 5 g B }':‘.2
(1+8_B) e
el

j E +j (E -uB)
e y z

X @® y
.2
2 2 j
) (“56'3;_) +Be A . o 2
- 2 2
(148 B) g (1+88)° =
el el
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APPENDIX F

The flow diagram and listing included here are for the computer
program written to carry out the calculation of the initial profile. A
fourth order Runge-Kutta method subroutine is employed to solve the
equations described in Sections II and III.

The following equivalence between major variable names employed

in the equations and in the program should be noted:

U()=f=-V
U(2)=f
U (3)=f
U (4) =g
U(5) =g
U (6) =6
U(7 =8

@/(...) = function of (...)

F (3) = = W (£, £, g, g)

rn t 1 [
F(5)=g = %, f.g g,0,86)
F(1)=08"= %t g. g, 6, 6')
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MAIN PROGRAM

<—{

2/
REA D @_ﬁ,, KFIEST = O
(NPUT

NTIME = 1}

NVAR = L

NTBL=0
rx = 0
NV =7

CALL
LAMDA ) ovTPUT

&l

w7t =
F (&

Caclc
Pkpog




MAIN PROGRAM (Continued)
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1- L((o'L)
T -2)]

F4

MAIN PROGRAM (Continued)

)

4“ = »\SA
winT(2)

| 401b () -462)
yeld ()

In

NY = ©O. ORA
«inT(3)

W

WINT(3) =
WINT(3)+au




MAIN PROGRAM (Continued)

NVAR = &
> _1'__“(4) _ au = ;05-9
—{ Az === LNT ()
[(ut)-1) | wiNT L
<
< >

Auw=.5A
WINT(5)

IWol D fuw)- L]
wuol D (¥)

WNTLS) =
WINTIS)+D W

NTIMmE =
NTime+1

ETAV= 0.
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MAIN PROGRAM (Continued)

g(c)-2-
Az——""
[lu(‘)~1~) )

|

Al = « 5 A
WINT (G)

aotd () - we)!
wotD(G)

winT(6) =
WiINT(6) + AU

NTIME =
Nr,/??E f ‘

ETAV = O,
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L

-1
) Akikn (g _"‘r'
' 5
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DERIV*

KFIRST- 1
ET= 8 72 o

z ys/rms

|

SoLve 7 EZ-S,

rok F(X),
= <, 7

LETURN

*The Runge-Kutta integration subroutine CALLS DERIV, which contains the
seven first-order non-linear differential equations for simultaneous solution.
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AL 1 _ 0/~-g5-67

HAIN PRUGKAM

1 ¢ MALw MAIN PRUGRAM
2 COMMON /CCOML/ PIZ,CP,ETE,UR,CM,EM,1E,C1,C2,PER,PRN,EKS1,AK0,EC,
3 lubadAaa, ROMR, 4K, PRES,P[, SM, RHOE e
3 CBMMUN7CL0M27 UC7),F(7),YAML,YAM2, YAMA,KFIRST
) CUMMON /CUOM3/ BPSPLET, TEST,S,ENE,NTBL _
o LuMMoN /CCOM4/ TEMPKA,QEAT,QECST,NTHA
7 DIMENSJON TEMPRA(S50),WEAT(50),3eCST(50) o
T T T T ) b;M:NsION‘USV(7),ATEMP(52)
9 DIMENSTON LINTC7),U0L0(7) e e
137 7T T exTeRNAL DERIY
11 NAMELLIST /INPu:/ ULDETA,ETAV,ETAFL, TEMPRA,QEAT,QECST,NTBA
12 T NAMELIST/OUTPUT/ YAMA,U,F,ETAV,DETA,YAML,YAM2, | TRY
13 1 :AU(b.INPUT) . —
A T U NtimMe =1 2
1> SWAR =y o 3
16 po 11 1=1,7 4
17 11 UiNT(pY=UCTLY L 5
13 2 YaMazu, 7
1y CARITECH, INPUT) I 8
24 NIBL=U 9
dl 1x=d‘ ah e w— - . - ——— - e PR - —— - -10
22 w7 11
23 C , o _ e v
P c FIND LAMDA FOR THETA PRIME CALCULATION
_é>____C . - —— -
20 CALL Lamba 12
27 LI/)=4, #SURT(2, #EKSL ) # (CM/ROMR/UERSURT (BK#ETE/SM) ) #(2,+ , 5#ALOG(SM/ 13
s L *PieEMYY TR (o) wel, 5
S S _LALL RKPB(DERIV,ATEMP,EJAV,OETA,U,F,NVY 14
S C
1 c clAV |S THE INDEPENUENT VARIABLE _ e -
IRV TuETA 1S THE DELYA ETA
39 _c U IS THE YEPENDENT VARIABLE ARRAY . e .
34 C b IS THE DERIVATIVE ARRAY
9o C clArL I35 THE FINAL ETA _ e
%o Ny o ' )
Y 5 KFIRST=( i N 15
$3 C C
_S9_ . _c FIRS1T IS A CONIROL TO SAVE YAML INITIALLY [N DERIV .
41 C
e EIAPRSETAV 16
42 LIRY=U 17
Aa b 10 TA=1,7 18
44 10 USV(IA)=ULLA) 19
45 . _.._15 CALL RrKpPB1 —— 23
q6 FiRY=[TRY+1 22
A It C1LIRY.LT,.4) GO TO 16 23
4o ARITE(G,0UTPUT) 26
89 _ le iFCLiRY,EQ,2) GU 10 50 7
50 c
2L € ___feST rOR FINAL ETA
3¢ c

¥9



_n%a20 1 D7225=67.. .. _. oo MAIN PROGHRAM. ..

o bSs It (ETAV,GE,ETAFL) GO TO 3 . __
o4 Ir CLTRY.EQ.4) GO TO 5
2h CALL RKPB2 B -
56 GO0 TU 15

—— .27 . . C . e

Sy C Ke-CALCULATE LAMDA PRIME
29 e G e -
6u 50 YAMAz(YAMZ2-YAM1)/DETA
el C [, e mm
t2 C ReSET VALUES T0 PREVIQUS POINT
68 C o _ o o = _
04 EIAVZETAPR

3 .. by obu lA=1,7 S

(o 60 UCLA)ISUSV(IA)

7 _ Lo 10 15

) 3 IF (NVAR=2) 100,101,102

$9 100 lr_ (NVIME=20) 103,103,104 __ e
70 104 wRIVE (6,105)

T3 105 FURMAT (S4HIFAILED TO CONVERGE GO TQO NEXT _CASE)_
2 U 10 1
7S o103 I+ tABS(U(2)-1.)=.001) 101,201,107 _

74 107 A = (1.=UL2))/7ABS(U(2)=1.)

I Clr (NTIMELGT.1) GO TO 108
7 VeLU = ,02#A*UINT(3)

Sy 4o 19 109 .. - , . _——
/¢ 108 DELU = S#A#UINMT(3)®ABS(UOLD(2)-U(2))/700LD(2)
IS 109 UINILS) = UINT(3)eDELV e
B po 7 l=1,7
(3P o voLuvl)=u(l) _ . _ _ _
se 7 utl) = UINT(D)

63 . __ . NlIME = NTIMEs1 -
84 El1AV = 0,

-3 Y 1 B £ B S . _
8o 101 NVAR = 2

87 1r (N)PIME-20) 111,111,104
.Y) 11t P (ABS(U(4)-1,)=.001) 102,102,110

89 110 A = (1.-U(4))/ABS(U(4)e1,)
9n [f (NVIME,GT,1) GO TO 115

94 .. UeLu = ,05«AsUINT(S) e -

Ye 0 10 116
9% - 115 LELU = JORARUINT(S)#ABS(UQLD(4)Y=u(4))/U0LD(4)
94 116 UINI(9) = UINT(5)*DELU

9 L0 B i=1.7 - R
9 voLbel) = U

9 .8 uel) =2 uINTCL) e e
93 NEfME = NTIME+l

.91 tlAv = Q,

10) w0 10 2
lut 102 NVAR =3
142 Ib (NTIME=20) 112,112,104

. 2112 0 (aBS(UC6)=14)=,001) 1.1,113
JNVR) 113 A = (U(6)-1,)/ABS(U(6)=1,)

Flo0




0242V 1

1u,
106
107/

T olud T

Lu9
11y
111

i
113

R
115
1./

¢/=25-07

MAIN PROGRAM

1F (NVTIMELGT,1) GO TO 117
UELU = 01#A%yINT(6)
GO 10 113

LeLu 5 ,9#A%UINT(6)#ABS(UOLD(6)=U(6))/7U0LD(6)

UINI(6) = UINT(6)+DELY
by Y 131:,
suLuCl) = utl)

Uely s UINT(D)
NILME = NTIME+]
e1Av = 1,

GO U 2

END

Fl1



B1R09 2 87-17-67 BLOCK PROSRAM

€ BLNCK BLOCK PROGRAM
RLNCK DATA
FOMMON /CCOAMYL/ P12,CP,ETE,UE,CM,FM,TF,C1,C2,PER,PRN,EKSL,AKD EC,
1NEAQAA,RAMR,RK,PRES,P],SM,RKOE
DATA P12/6.,22E~19/,CP/545,/,BYF/1920,/,UE/395,6/.CM/6,67E-26/,
1FM/9,1076-31/,%6/1920,/,€1/2,420E24/,C2/4 ,49E4/,PER/ 01/, )
ZPRN/.666667/.EK51/.01/.AK0/8.054E-12/.EC/1.602?-19/.QE‘O‘AI.1/.
3ROMR/449,5775E~-7/,BK/1.,38E~23/,PRES/164000./:,P1/3.1416/,
4SNSZ.ZE~25/.RHOE/.5/
EN

L ROV I

DO WDV S

-

F12




B1BOS 3

OPDNOUN BLWWNE

N7-17=67 LAMDA CALCULATION

£ LAMDA LAMPA CALCULATIAN
QURRAUTINE LAMDA
rOMMON ,CCOML,/ P1Z,CP,EYE,UE,CM,FM,TE,C4,C2,PER,PRN,EKSY )AK], E,
1NEAQAA,ROMR,BK,PRES,P],SM,RHOE
COMMON/CCOM2/ U(T7),F(7)y,YAMY,YAM2,YAMA,KFIRST
rOMMAN ,sC€CBM3/ BPSP,ET,TEST,S,ENE,NTRL
RPSP=PER#PRES
S=CL#EYERa(1,5)0U(6)8u(y ,5)uEXP(-C2/(ETEMUL6)))
TEST=4 ,4RPSP/(U(4)aTEaRaBK)
1F(YEST,BT.,01) 6O YO 15
FNF=YEST®S/4 ,8(1,.-YEST/4,)
60 Yo 20
15 FNF28/2,8(SQRT(1,+TEST)=t, )
20 ALAM1=4 ,24FE7%(EYF#U(6))any , 5/ENE®s,5
ALAM?24 BESSETEWU(6) /ENE®s(Y,/3,)
GAMMAzZRK&TEXENE&U(4)/PRES i
AKSKAZ(7 SF=Ta((6)SETE)#a2 ,5/(TEalLI(4))an 75)/(,25aAL08(55,eALAM
1asdsAl AM2004)Y) .
AKFKAZAKSKA/(S ,¢1,48421401 , /GAMMASAKSKASOEAQAA®SORT ((EM/EMYalUf4) s
1TEY/(ULOIRETEYY)
YAM2=zAKEKASUtAYus(~,25)/PRN
500 RETURN
END

F13



03A29 3

O ® YOI &WN -

07-12-467 DERIVATIVE ROUTINE

o

(s e el

2 Be e

DERIV DERPIVATIVE ROUTINE

SURROUTINE DFRIV

roOMMAN /CCOM1/ P12,CP,ETE,UE,CM,FM,TE,1,C2,PER,PRN,EKS1:1AKDEC,

1NPEAQAA,ROMR,RK,PRES,P!,SM,RHNE

FOMMON/CCOM2/ LI(T7),F (7)Y, YAML,YAMZ,YAMA,KFIRSY

cOMMAN /CCNM3/ BPSP,EY,TEST,S,ENE,NTRL

COMMON /CCNM4/ TEMPRA, NEAT,QFCST,NTBA

NIMENSTON TEMPRA(S0),QEAT(50),NECST(50)

CALL LAMDA

IF(KFIRST,FQ,0) YAMi=YAM2

KFIRST=}1

FT=U(6)#FTF
10 fALL TABLE¢TFMPRA,NEAT,QFCST,ET,NTRA,NTBL,NEA,RECS)
15 NTRL=1

CALCULATFE VARIABLES

2N c1=S#(3,/(?, 'FYF'U(b))‘C?/(ETEnuté))OO?)O(-.5¢QSI? +TEST®S/4,)/(Se
1SQRT(1,+TEST)))
TERM1=1,/7(UU(4)#RK)
Q2=( (4.4 MRBPSP /(5,8 TE##2))eTERMI ) # (TERML/(SQRT(1,¢TFST) ) .
TERMIzP[ay(6)un(1,5)#((EC/(16,4BK))#(EC/(AKOSETE)) o (1, 7yt6)))en2
TERMPZALNGE (L (32, /FC)-(BK/EC)OQETE-AKO/FC)J'((SORY(BK)’/(SQRY(ENE)
1))V (SNRT(AKO&FTE)Y)
3N NETSTERMYI#TERM?
TERM1z(QEA/CM)# (PRES/(RK*TE))a(1./U(4))+(QFCS/SMIe( (BPSP/(BKeTF))a
1(1./0(4))=ENF)+ (LQF]/SM)®ENE)
4N SNUS=TFRM1#aSORT(¢(R,*BKaETE)/(PI#EM))aU(6))

CALCULATE PERIVATIVES

Ft1)=Ut2)
FE2)=utd)
F(3)zU(d)ne 252 (3)0(,250 (4 aa(-1,25)2U(S)~UL(1))
F(4)=U(s)
CSNT1zBKaETE#U(A)
TERM{2YAMARU(7Y 4 (UIL)®11(4)8U(7)/(RHOF#CP)Y)n(t,5#BKeENE+(1,50CSNTL»
1P17)=S1)
TERM2=(J(5)8U(1) /tRHOF#CP*ETEY®#((1,54CSNT1+P17)aS2+ENFat2,58CSNTL1+
1P17))
TERMIE(ENE#U(4)Y#2 , #EKSY1/(ROMR®IE*#2) )4 (3, eRK&ETE/ (RHOESCP#TE) )s (EM
1eSNUS)#(UI(6)=TFali(4)/ETE) =

5N F(7)==1,/YAM28(TERML=TFRM2@GTFRM3)

EQM1=U(1)0U(5)-(U(4’0-( 1.25)2Ut5)wn2/(4, OPRN))O(UEGU(S))OO?OU(4)

1es(~,25)/(CPeTF)
YEPM?zFTE/Yen(H(7)-VAMA¢VAM2-F(7))aP!z-(cETE/(RHOG-CPoTE))051-U(1)
18U(4)#1)(7)=S2eU(1)#UCA4Y#U(5) /RHOF+ENE®(1)#U(S)/ (RHNOEWCPSTE))
F(5)=-PRNaU(4)#0(,?5) e (TERML+TFRM2)
F(6)=zUut?7)

50N RETURN
END

F14
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APPENDIX G

MHD BOUNDARY LAYER MAIN PROGRAM

INDVICATUR

CA L
NXTLST

T NRT ST =
N K =\

NTIMES =0
MEDGE = |

CALL
eocey fY

Gl



MAIN PROGRAM (Cont.)

N

NphIT
= vl

C AnL
WO Ve

Nk : )
NK: KK > | NVMN = |
NwAIT= Nt
3 L
NJMN
=2
CAL\
vMN SyB

Q

G2




SUBROUTINE READIN

READ /WRITE
PAGE

HFADER

READ
INPUT

DATA

WRITE
INPUT
DATA

CALYL

INITI L

RETURN

G3



SUBROUTINE INITIAL

SET

WLST(X) =z W(r)

EXTEND
VW, L wisT
PROFILES

FROM NwRT
10 50

TDA - 207
TROA: 2/4'
DETAZ: (an)?
-t nad)
RE TURN

G4




SUBROUTINE EDGE 1

U, = EDG E(ME06E,1)

SET EDGE
CoNnPITIONS
AT THIS &

EKSI= EKSIS +
(MEDGE- 1) & DKS )

TSgs1 = JT

MEDLE = MEDGE + |

RE TVYRN

G5



Neul

=N+l
Q"'\ : Qn
Q'\ = th-'

%y ey T %Xgn
q1-\ :xihol
Nz\-\ - ‘Zh
dl“ = dz

ComMmeurT it

SUBROUTINE NXTLST

7"" '/t,'\v-l

T”\" ‘/1 ' net

9"#‘{_ q R+

G6

comfPuTtE
Qm“ﬁ., nel
)mqyl.’ n ¢!

Pr mE/rq NS

CombPulE W

Ne , Vin

3

CompPulE

e, Pe P

comeute )
*1 me+ Ve, ~t

-(1 me gy, Nt

MATRICES

Ve

e =t c——

CoOMPUTH

Bt F

—~—en B

RE TURN




INVTIALIZE MATRICES
Di =0

AA;; -0
Bl 79

Ciy = 0

a»olf

F'ﬁﬁ"l N

c}ﬂn Va ,"

Omviy,n

.!F_._-..__...
ComPutT )
2{ Se Ve:/“s

Sy, 52, %

3
v
CompuTE
FVl i 5n

SUBROUTINE ABCD

G7

CALYL

NATLOT

CO'*OU\“G,
Ql , ]0 'P"
14 /

MVl =z V(;x)——

COMPUTT T nRE

’

2

CUNVE NI AT

COM DB OF TEAMS

Mo ENTIM
F"-’fl)l\‘r [ A
COEF FICIENTS
L. ferakyTe D

r EnNi -~ Y

3 q\/ﬁ‘\.'? iyt

“w B ST L EN

‘.()
RN ol SV I, J

F/‘\‘f'i'( H
EyUnt 07 !
COF Y ELCiEATS

cempur g ‘

RETURN




SUBROUTINE EKPK

MATRIX OF, T=1,2,3
YENf, 3,5
A= B, +<H
E
Teme = aA,+<)F PYTEN
Ty, )
S Ag-1,7 *
CALw MATINY Q
GlvEs S4-3.J
-}
A= (BL*C"H) p‘hi\’k"a‘ p'.'j
Az A+ C xTEM?
VA RTRIX OF ] l
AA3> AxXTEMS CALL MATINV
GI\VES

-\

A= (6 t+tceE,)

T=Vv,2 3 x}
L RILAR S X 20
Ei3,1 T-AAL:
' ’ TEMP = AXAA
TemtP=o L
COMPUTVE N
MNTﬁI:_'E?’-“WT For LOC or
€ n
TEMPIP = C v h T
T21,2,3
Enﬂ‘z c-TEMP
e XS l%
Doz Dy -TENS MATRIX OF T
TEM':c.q,“_'

_____ R T
‘¢'1’A'°zj D: 0 - TEMP
L

R ETJRN do s AxD

G8




SUBROUTINE WNSUB

o Z

N =

N r

'ﬂ

(1Y (1}
(

-

TERM 4 - W,
TEAM 2= W,
TERM 3= iy
MN - 3N-72

4

TEMP, 1 |

= Ema.un,z

L

Comevre

W

b e

l‘

COoMPUT E '

YUR N
NI,I ] RE

G9



SUBROUTINE VMNSUB

CoM furvyeE

RETURN
fo §0

SE
WLST = W
R ETURN

G1lo




CHATN APPENDIX H

COMMON/COM1 /BKIEMIECsCLlsPI1AKOIReY(1000) s TEIDUM(10) s TWIEKSISIEKSIM
1+DUM1(7) e MEDGE+EKSI
COMMON/COM3/SMLHH(3) sV (1000) ¢«WLST(1900¢3)ew(1000e¢3)sTEEKSI(10)
COMMON/COMS/NeNPL 1 s PCCoNWRIT e KKoNK s CONSTaNRTSTeNTIMES«DUM3 (9) s NVMN
Cc RETURN HERE FCR START OF NEXT CASE
10 MEDGE=1
NRTST = 1

NTIMES = O

NK 1
BK = 138E=23
EM = 94107E-31
EC = 14602E-19
Cl = 2e42E21
Pl = 341416
AKG = BeB854E-12
Y(1) = O
R = 8,317E3
CALL READIN
40 CALL =DGE1
SMLHH(2) = TW/TEEKSI(MEDGE)
50 N = 0
CALL NXTLST
60 N = 1
CALL NXTLST
70 N = N+1
CALL aABCD
CALIL EKPK
IF (NRTST-N) 80,80+90

80 CALL TEST
H1




NRTST = N
IF (CONST) 9042000200
90 IF (N=999) 7041104110
CONVERGENCE NOT ATTAINEDs PRINT AND GO TO NEXT CASE
liO WRITE (64903)
NWRIT = NPLI1
CALL wosuB
GO TO 10
CONVERGENCE ATTAINEDs GO TO NEXT PROFILE
200 CALL wNSsSUB
IF (PCC) 20142024202
201 NK = KK
202 IF (KK=NK) 22002204210
ITERATE UP TO (K-1) TIMES
210 NVMN = 2
NK = NK+1
CALL VMNSUB($50)
INITIALIZE FOR NEXT PROFILE
220 NK = 1
NVMN = 1
NWRIT = NPLI
CALL VMNSUB($50)
IF (EKSIM-EKSI) 2604260440
260 WRITE (6+902)
N=NWRIT~-1
PUNCH 9004s ((W(IeJ)el=1eN)eJx=1e3)
PUNCH 900e¢(V(I)el=1sN)
PUNCH 901 e (N)
GO TO 10
900 FORMAT (4E1848)

H2




901

3C2

903

FORMAT

FORMAT

FORMAT

END

(7H NWRIT=4¢14)

(16H THATS ALL FOLKS)

(36H CONVERGENCE NOT ATTAINE )

H3

TRY AGAIN)



CRELDIN
SUBROUTINE REANIN
DIMENSION ARAKSTI(10) , : .
cwMMoN/coM1/nuM1(1n18\.1N.EKSIS.EKSIM.DKSI.DUMZ(S).DETA.TSOSI.DELT
1A, MEDGF, FKSI ,
COMMON/COM? /EDGE(TD,11), TEMPRA(S0),QEAT(50),QFCST(50)
CJMMON/COMj/SMLHH(K).V(1000)-NLST(lOUU:5)»N(lUUO;S):TEEKSI‘lO)
COMMON/~OMS /N, NPL1,PCC,NWRIT, KK, NK, CONST,NRTST,NTIMES,EP1,EP2,EPS,
{FRK,EPPY,EPPD,FPPS,NPRINT ,NTAB,NVMN
COMMON/(:0Me /DUMS(25),C2,PER, OIN,CP,ROMR,CM, TIH, TIWC,PIZ,SM,BL
NDIMENSION FF (12)
NaMhLIQT/NAﬂFﬂ/nFLTAnEKSISnEKSIM»DKSI:DETA:QIN:CM:SM-TIWC:CP'PFRtP
11,,02,R7,ERR,EPP1,FPP2,FPP3,FP1,EP2,EP3
NAMEL IST /NAMED /TEMPRA,OEAT,QECST,EDGE, SMLHH, TEFKST ,NWRTT
MAMELIQT/NAMFS/KK ,NTAR
READ (8,911(FF(1),1 = 1,12)
CalyL SPGHIR(FF)
ReAD (&, NAME1)
REAN (g, NAMEQ)
7 RbEAD (5,NAME S
IF (NWRIT k0. 0 Go T0,8
REAL (5,R90) ((W(),Jd),1=21,NWR[T),J=1,3)
READ (B8,R90) (V(I),1T1,NWRIT)
B9 FORMAT (4F1H.8)
G 10 9
B Nuk | T =\
9 CONTINIF
KMR= S TFE-7%FDGECY, 7)#EDGE(1,2) #w 75
WA LTE (4+YA0)FKSTIS,EKSIM»DKSTDETAQIN .
91 FORMAI (7HNEKSTG=F16.8,3X, 6HEKSIM=E16,8,3%,5HDKST=F16.8,3x,5HNFTA=
1E . 6,8,3Y,4H0IN=ZE16.8/7/)
w11k (A,90,)UFLTA,ROMR,CM,SM,CP
91 FURNAI (7HANELTA=E16.8,3X.AHROMR =E16.8,3x,9HCM =E16.8,3X,5HSM =
1B 6,8,3x,6HCP =F16.8/7/)
wliE (6,9302)TIW,PFR,P1Z,Cy,RB2
9'? FORMAT (7HATIWC =H16.8,3%X,6HPER =E16,8,3X,5HPI7 =F1A.8,3X,5HC? =
1E16.8,3x,4H7 =F16.8/74)
Calt iNTTIL
CiLL WOoSuRr
WRITE (A,905)
9% FURMAT (1H1/14XAHIFMPRAZ0OX4HAEAT21XOHQECST /)
Wl TE (6,906) (TEMPRACT)Y,QFAT(1),QECST(I),1 = 1,NTAB)
9r6 FURMAL (qrH $F25,R)
NN = (FKSIM-E=KSIS)/DKSI*1.,5
wrRliF (62907
97 FURMAT (1h1,1 1X4HEKST17xPHIUE18X2HTE18X3HETF17X3HDUEL7X3HNTE/)
ARAKSTI (1) = FKSITS .
no 0 1 = 2.NN
“0 ARARSI(]) = ARAKSI(I=1)+DKS]
WRITE (#,903) CARAKST (1), (FDGF(I,Uy,d = 1,5%),1 = 1,NN)
9: 8 FORMAT (1H AFY(.R)
WRITE (+,,9n7)

99 FORMAT <1H1/7X4H5K9113X4HDETE13x4HRH0513X5HDRHOE12X4HAJYE14X3HEXE1
1IXAHPRES/)
WHI'E (%, %12) (ARAKS](])»(EDGE(l» )y = 6,11, ] = 1/NN)
610 FORMAT (1H 7E17,8)
9:1 FURYAL (12AAR)
3999 RrTURN
EiD

H4




SUBROUTINE INITIL
CONMAON/COM1/DUMI(1007) s TEsDUM2(10) s TWeDUM3 (3) s TDA+TDDAWDETAZ4DETA
1DUM4 (4)
COMMON/COM3/SMLHH(3) 4V (1000) s WLST(100043)ew(1000¢3)sTEEKSI(10)

COMMON/COMS/NeNPL1+PCCeNWRIT «DUMS(15)

DO 10 1 LeNWRIT

Do 11 U 143
Il WLST(TIeJ) = W(leJ)
10 CONTINUE

IF (NWRIT—-1000) 914414

{ C EXTEND PROFILES
{ 9 NPL1I = NWRIT+1
DO 12 1 = NPL1+100O
| Vil) = v(I=1)-DETA
i CO 13 U = 143
WLST(TasJ) = 1o
13 W(ledy = 1
12 CONTINUE
la Tw = SMLHH(2)*TEEKSI(1)
TDA = 2+*%DETA
TODA = 2./DETA
DETAZ = DETA*%2
9999 RETURN

END

H5



CEDGE1
SUBROUTINE EDGE1
COMMON/COM1/DUM1 ( 1007) s TEsETE+PRES s AJYE ¢ UE s DUE ¢ DTE+DETE +RHOE + DRHOE
1 sEXE ¢ TWIEKSISIEKSIMeDKST ¢DUM2(4) 9 TSQSI ¢DELTACMEDGE +EKSI
COMMON/CCM2/EDGE( 10+ 11) sDUM3(150)

COMMON/COME6/DUM4L (29) +ROMRICMeTIWeTIWCIDUMS(2) ¢BZ

UE = EDGE(MEDGEs1)
TE = ELGE(MEDGE2)
ETE = EDGE(MEDGE.;)
DUZ = EDGE(MEDGEs4)
DTE = EDGE(MEDGE+5)

DETE = EDGE(MEDGE+6)
RHOE = EDGE(MEDGE+7)
DRHOE = EDGE(MEDGE8)
AJUYE = EDGE(MEDGE9)

EXE = EDGE(MEDGE,10)
PRES = EDGE(MEDGEs11l)
ROMR=RHOE* 3¢ 1E-7*TE¥¥*¢75
IF  (AJUYE) le 24 2

1 Tiw=s TIwC

GO TO 3
2 TIW= Qe
3 AA = MEDGE~1

-

EKSI = EKSIS+AA*#DKSI

f

MEDGE MEDGE+1

TSGS1 SQRT (2 *EKS1)
9999 RETURN

END

H6




CMXTLST
SUBROUTINE NXTLST
COMMON/COM1 /BKaEMIECIC1 9Pl s AKOJReY(1000) s TECETE'PRESIAJYESUE +DUMI(S
1) eEXE«DUML (7)sDETATSGST «DUMZ2( 3)
COMMON/CCM2/EDGE (10911 ) + TEMPRA(50) ¢ QEAT(50) s QECST(50)
COMMCN/COM3/SMLHH(3) +V(10CO) s WLST(100043)9w(1000e3)¢TEEKSI(10)
COMMON/COM4/DUM4(12CGC0) e H(343) +EF(383) «DUMS(60)
COMMON/COMS/NeNPL1+DUME(15) « NTABsNVMN
COMMON/CCM6E/ELLS9EL +ELNXes YAMLS s YAM ¢ YAMNX 2 PRNL. S ¢ PRN e PRNNX ¢ ALF 1L S s AL
1F1eALF INXsALF2LS s ALF 2+ ALF2NX 9 SeGNX s THENX s ENX ¢ CONX ¢ SXM ¢ BETAX 2+ QET ¢ QE
ZA.OECSyCEoPER.OINQCP.POMRsCMoTIW{TIWC.PIZQSM.BZ
QEAQAA = ol

MPL 1 N+1

1]

ELLS

EL

EL = =LNX

YAMLS = YAM

YAM = YAMNX

PRNLS = PRN

PRN = PRNNX

ALF1ILS = ALF1

ALF1 = ALFINX

ALF2LS = ALF2

ALF2 = ALF2NX

GNX = «S*(WINPL1+¢2)+WLST(NPL1+2))
THENX = o5%(WI(NPL1+3)+WLST(NPL1+3))
ET = ETE#*THENX

PRNNX = 26¢/3

ELNX = GNX¥¥(=e25)
S=Cl*(ET)*¥145*¥EXP(-C2/ET)

GRP = 44¢%PER/(BK*S)#PRES/TE/GNX

IF (601=-GRP) 241,41

H7



1 ENX = GRP/4Ge#(1e=GRP/44¢)*S

Go TO 3

2 ENX = S/2¢%(SQRT(1e+GRP)=16)

3 ENUIN = (QIN/BK)*(PRES/GNX/TE)*SQRT((8.*BK*TE*GNX)/(PI¥EM))
CALL TABLE(TEMPRAIQEAT«QECST+ETINTABINIQEA4QECS)

QE1

PI*( (EC/AKO) ¥ (EC/( 16 ¥BKX¥ETE*THENX) ) )y *%2

QE1l QE [ #ALOG (22 * (BK¥ETE ) *%1 ¢ 5/EC/EC*AKO®%1 ¢S5/ (EC¥ENX¥%e5)

n

19 ( THENX*%] «5))
ENUE = PRESH*QEA/(BK#GNX*TE)+(PER¥PRES/BK/TE/GNX—ENX)*¥QECS+ENX*QEI

TN

SQT = SQRT (B8¢*BK/EM¥ETE*¥THENX/P1)

ENUE = ENUE*SQT

CONX = EC/EM*EC*ENX/ENUE

BETAX = BZ*EC/ENUZ/EM

BéTAl = BZ#EC/ENUIN/CM

SXM = 1++BETAX*BETAI

Al = 1 e24ET7HET®%] ¢ S/ENX**e5

A2 = 1 e8ESHET/ENX®%(1e/30)

GAM = ENX* (BK¥TE/PRES) #GNX

BKSKA = 3¢E-6*ET#%2e¢5/(TEX*¥GNX) %#%¢7S5/ALOG(S550e+A1 ¥ ¥4 +A2%%4)
BKEKA = BKSKA/(1++BETAX*%2)/(le+1le414%(1e—GAM)/GAMXBKSKA*

1 (QEAQAA) #*SQRT(EM/CM*¥GNX*TE/ET) )

YAMNX = ELNX/PRNNX*BKEKA

ALFINX = 1e/SXM

ALLF 2NX CONX*¥BETAI /SXM

IF (NPL1=1) S5¢5¢9999
S5 GRP = YAMNX*CP*ROMR*UE*(EC/BK)/TSQSI/DETA
AJEYW = ALFINX*AJYE+ALFZ2NX*EXE
SCRB = (AJYE+TIW)/EC/ENX*¥SQRT(2e%P 1 tEM/ (BK¥ETE*THENX) ) +SQRT ((2e *P1
1 *EM) /SM)
B2 = 2e¢%GRP/((2¢-ALOG(SCRB) ) #( AJYE+ECHENX*SQRT (BK*¥ETE* THENX/SM

1))+1eS*¥GRP-2¢S*¥AJEYW+2e ¥ TIW)
) H8




DO 10 U = 143
DC 11 I = 1.3
H(leJ) = Oe

11 EFCLeY)

1}
(@]
.

13 CONTINUEZ

H(3+¢3) = B2

FF(343) = B3

SMLHH( 3)=B2*WLST(2¢3)+B3%¥WLST(343)=JLST(1¢3)+4e*TEXGNX*TIW/ETE
1/(2e¢%*GRP/B2)

Y9999 WRITE(6+100) YAMs EETAXs ENXe BETAIs CONXes SCRBo BKEKA
1ud FORMAT (T7E17e4)
RETURN

END

H9



CTABLE

SUBROUTINE TABLE(TEMP+QEAsQECSsARGSIKTAB Ny XQEA +XQECS)
DIMENSION TEMP(S50) «QEA(50)¢QECS(50)
XTEMP = ARGS

© IF (N) 104101410

10 IF (XTEMP=XTEMPL) 101411411

101 U =1

NTAB = KTAB

11 NTAB1 = NTAB+1
K = J=1
CALL TLUI(XTEMP+NTABsTEMP(J) e Je IERR)
IF (IERR) 13414413

13 WRITE (64901)XTEMP
GO TO 9999

14 NTAB = NTABl-J
J = J+K
IF (NTAB) 999919999415

15 XQEA = TNT1I(XTEMPsNTABTEMP(J) +QEA( J)e2¢ IERR)
XQECS = TNTI(XTEMP«NTABeTEMP(J)+QECS(J) +24+1ERR)

16 XTEMPL = XTEMP

901 FORMAT (34H THIS TEMPERATURE IS NOT IN TABLE=1E168)
9999 RETURN

END

HI10




CABCD

10

11

SUBROUTINE ABCD

COMMON/COM] /BKsEMIEC4C1 4PI4AKO4ReY(1000) s TEWETE +PRESsAJYE+UE+DUE LD

1TE+DETE+RHOE + DRHOE s EXE s TWeEKSISsEKSIMIDKST g TCAsTDDASDETAZ2+DETASTSQ

1ST«OELTA«MEDGE ¢EKSI
COMMON/COM3/SMLHH(3) «V(1000) ¢+ WLST(100043)ew(1000¢3)+TEEKSI(10)
COMMCN/COM4/E (30004 3)sPHI(1000¢3) s H(342)4EF(343) s TEMP(343)9AA(343)
1eB(343)9C(343)aD(2)91A(393)sCKMAT(34.3) s TEMPP(3)
CCMMCN/CCMS/NeNPL1sDUM( 1) «NTABINVMN
COMMON/COME/ELLS+ELsELNXs YAMLSsYAM s YAMNX ¢ PRNL S+ PRNsPRNNX s ALF1LS s AL
1F1oALFINXoALFELS;ALFEoALFZNX.SoGNXQTHENXQENXQCONXQSXM!EETAXOQEI9@5
ZAVQECSsC2+PERIGINICPIROMRsCMa TIWeTIWICIPIZoeSMeBZ

FP = eSH(WI(Ne1I)I+WLST(NS1))

G = GNX

THETA = THENX

BETAE = BETAX

COND = CONX

ENE = ENX

SUM = SXM

DO 10 I=143

OD(I) = Coe

DO 11 1I=1,43

DO 11 U=1.3

AA(TaU)=Ce

B(ledy=0e

C(lsJ)=0a

SNUS = (PRES/BKH*QEA)/TE/G/CM+(QECS/5M) % (PER*¥PRES/TE/BK/G=ENE )+ (EN
1E¥QEL ) /CM

SNUS = SNUSHDELTAXSQRT (B¢ ¥BK)¥ETE*TH ITA/RPI/EM)

GRP = PRESH#PER/BK/TE/G

S1 = S*(1eS/ETE/THETA+CZ2/(ETEXRTHETA) ¥ %2 ) ¥ (= eS5+(S/2e+GRP)/S/SQRT (1

1+4 e ¥GRP/S) ) H11



S2 = ¢8%(CM/BK)I*GRP/TE/G/S5ART (1 e+4 e *¥GRP/S)
S3 = 2¢#GRP/PRES/SQRT (1 e+4e*GRP/S)

FPA = (WLST(N+1+¢1)=WLST(N=191))/TDA

FPAA = (WLST(N+141)=2e*WLST(Ne1)+WL3TI(N=-141))/DETAZ

GA = (WLST(N+1¢2)=WLST(N=1+42))/TDA
GAA = (WLST(N+142)—2¢%WLST(N42)+WLST(N=142))/DTAZ
THA = (WLST(N+1¢3)=WLST(N=143))/TDA

THAA = (WLST(N+143)—2e*¥WLST(Ns3)+WLIT(N=143))/0eTAZ
RHOS = R/PRES/4U*TEX (WLST(Ne2)+WLST(N=1¢2))

Y(N) = Y(N=1)+TSQSI#RHOS* e S*DE TA/UE

CALL NXTLST

ELA = (ELNX-ELLS)/TDA

YAMA = (YAMNX~-YAMLS)/TULA

PRA = (PRNNX=PRNLS)/TDA
ALF1A = (ALFINX=ALFILS)/TLA
ALF2A = (ALF2NX=-ALFZ2LS)/TDA
V1 = V(N)

Ql = DKSI/(4e*EKSI*FP*#TDA)

Q2 = 2+SH¥BKX¥ETE/EC*#TSQS 1/ (ROMR¥UE#CP*TE) -
Q3 = DKSI*DTE

Q4 = PIZ/(RHOE*CP*TE)

Q5 = ] S*BK*¥ETE#*THETA+PIZ

Q6 = 2.S5*BKHIETEXTHETA+PIZ

Q7 = S«*BK/ECHRHCEX*ETEXUE/TDQSI/G

Q9 = ROMR*UE**2

Q0 = RHOE*CP*ETE*Q9

Q8 RHOE*CP*TE*QY

Q10 = 1+5%BK*ENE

FP = WLST(Ne1)

H12
G = WLST(Ns2)




THETA = WLST(Ne3)

AA(le1) = Ql#(V]I=2erlL /UETA=CLA)

AA(L1e2) = Ue

AA(l1e3) = Ue

S(lel) = 1e+DKSIHDUE/2e/UbE+4e%Ql*EL/DETA
S(le2)y = ~DKSI*DUE/(ZexUri#F 1)

B(le3) = Ue

C(lel)y = Ql*(=VI=Ze*l /UETA+CLA)

C(lez2y = Ooe

C(le3) = Ve

D(1) = FP*(1.-DKSI*DUE/Z./UE)+(DKSI/4o/EKSI/F1)*(—FPA*V1+20*EKbI*G
1 *DUE/UE+ELLAXFPA+EL*FPAA)

AA(241) = =2%¥QIRUER%2/CP/TE#EL*FPA

AA(Z242) = QLIH¥(VI-2e¥*EL/PRN/DETA=FELA/PRN+Q4#ENE*V1=PIZ#S2#V]1*G/RHOE
1)

AA(203) = Ql¥(=2¢*%¥ETE#YAM/DETA/TE-ETEXYAMA/TE~Q2% (ALF 1 *AJYE+ALF2H*E
IXE)+TQY#ETE*V1#S1%#G)

S{cel) = U

B(292) = 1e+DKSIHUEHDUE/ (2% CPY¥TE) X (1e=PIZ#S3)+4 e ¥Q1*EL/PRN/DETA+U
13/72¢/TE+(Q4*S1)*THE TA¥Q3/2e =P IL*52%¥G/RHOE=PIL*#CP#Q3 %52 %#G/RHOE/UE
B(2+2) = B(242)+DKSI/2e*UEXDUE* (ENE*Q4)+(PJZ*ENE ) /CP/RHOE/TE+{ Q4%
1ENE) /2« /TE*Q3-DKSI*CONDHEXE#*¥2/QB/ 2 /F 1 /SUM~DKS I #AJYE %323 ( SUM* %2+
CBETAE®%2) /(2 ¥COND#*F | ¥Q8#SUM) +DKS I #AJIYEH*BZ% (1 e ~PI1Z%*53) /2 ¢ *¥UE/Q8~
SOKSI#(PIZ¥ENE)#BZ/2 e /PRESHUE/UB*AJYE

Bl2+s3) = 4¢*¥QLIHYETEX¥YAM/DETA/ TE=Q2%DKSI1/8e/F1/7EKSI* (AJYE*ALF 1 A4+EXE*

1ALF2A) +Q4*ETE*S1#G+Q4%S1*G*U3/ 2

"

C(24¢1) —AA(241)
C(242) = Ql%*(=V1I-Z2e*EL/DETA/PRN+ELA/PRN=Q4#ENE*V1I+PIZ#52%#V1#G/RHOE
1)

C(2¢3)

QIA¥(ETE/TE¥ (=2 *YAM/DETA+YAMA) +Q2% (AJYEX¥ALF 1 +EXE#ALF2)=-Q4

I1*¥SIXETE*V1I*G)
H13



D(2) = G=Q3%G/2e/ (E—(1e=P1L¥03)¥UEHDKSIHG/ (20 ¥CP*TE) ¥DUE+Z e * DR TARU
11%(EL/PRN¥GAA+GAX (ELA/PRN=V1)+ETE/TE* ( YAM¥THAA+THA®YAMA) +Q2% (THAX (
PAJYEXALF1+EXE*ALF2) +THETA% (AJYE¥ALF 1 A+EXE*ALF2A) ) —Q4*ETE®S1 ¥G* THA®
3VI-Q4*ENEXGA¥V1+P 1 Z*S2%V 1 ¥G*GA/RHOE #2¢ ¥GHEKS [ /5UM¥ (CONDYEXE ¥ ¥2+AJY
GE#%2/COND* (SUM**¥2+BETAE*%2) ) /Q8)+Q4 tS1I*ETEXG¥THETA=PIZ*52*%G*%2/RH0O
SE-DKS[ *UE#RHOE* (Q4#ENE ) ¥G/ 2 e /PRESH#DUE+Q4*ENE*¥G+DKS I ¥AJYE*BZ/2e *UE
6/Q8% (GH*(1e=PIZ#53)+GAPIL*ENE/PREDS ) =Q4¥ENE*Q3%#G/ 20/ TE

Qe

i

AA(341)

AA(342) (ENE/Q*QE-S2*QS*CP*¥TE) *#¥Q9*¥V 1/8e /EKSI/DETA

n

AA(3¢3) = QO¥ETE/4e¢/EKSI/DETA%(V1/2e%(Q10+51%*#Q5)—CP*¥RHOE/Q%* ( YANM/DE
I1TA+YAMA/2e) ) =Q7/8e/DETAX* (ALF 1 #AJYE+ALF2#EXE)

B(3e¢1) = THETA* (QO*¥DETE/2e%(QlU+S1%Q5) =¢ 7SHETE*BK¥SI¥UEX (=AJYEXBZ+
1 QO¥RHOE*DUE ) ) = (ENE*Q6) ¥*QO*DRHOE/2 ¢ /RHOE=52#Q5%Q9/2e #*CP*DTE #*#G=P1Z
2#S3/2 4% (Q9*#UEXRHOEX¥DUE~UE*AJYE*BZ)

B(3+2) = QOXFP*((ENE*Q6)/Q/DKS1-(Q5*S2)#CP%( TE/DKSI+DTE/2e) ) ~Q10%
1TE* (EM*SNUS )

B(34¢3) = (QlU+51%QUS5) *¥QO9* (TEF¥F1/0KS [+ e SHDETE*FP ) — ¢ 7SHBK¥ETE*S3*FP*U
1 9¥RHOE ¥UE*DUE+QO*YAM/ 2 e/ (EKS [#DETA% £2%Q) —e 25# Q7% (ALF 1AXAJYE+ALF 2A%X

2EXE)+QlO*¥ETE# (EM®SNUS )+ 7TSHETEXUEXSI*AJYEHBZXFP*OK

C(341) = 0o
C(342) = —(ENE/Q*Q6-S2*¥QSHCPX¥TE)*QI*¥V1/8¢/EKSI/DETA
C(3e3) = =(Q10+Q5S*¥S1)*QO*ETEH*V1/8e /EKSI/DETA~QO* (YAM/DETA=YAMA/ 24 )

1/4¢/EKSI/DETA/Q+Q7/DETA* (ALF 1 *AJYE+ALF2*EXE)/8e

D(3) = QOX¥ETE*#(QLU+QS5%¥S1 )% (+F1/DKSI*#THETA=V1*THA/4e/EKS1)+Q9*(ENE/
lG*Qé—SE*QS*CP*TE)*(FP*G/DKSI—VI*GA/#./EKSI)+ENE*06*09*aS/RHOE*DRHO
2EXFP

D(3) = DI(3)+PIL*¥S3/2e¥FP* (Q9*RHOE#US #DUE~UE¥AJYE*BZ)+Q0* (YAM¥ THAA+
1YAMAXTHA) /4 o« /EKSI/Q+¢25%Q7#* (THAX (ALF 1 ¥AJYE+ALF2*EXE) +THETA* (ALF 1 A%
2AJYE+ALF2A*EXE))+COND*ExE**2/;uM**2¢AJYE**2/COND*(SUM**2+BETAE**2)

3/SUMH%2+Ql1OX TE#G* (EM¥SNUS ) ~QIUXETE#THETA* (EM%¥SNUS)

9999 RETURN
H1l4




CERKPK
SUBROUTINE EKPK
CON AON/COMB/SMLHH(3) s DUM1 (701 V)

COMMON/COM4G/E(30UUe3) sPHI(1UGCULI3)aH(Se3)1EF(3e3) e TEMP(343)90AA(293)

—

1B8(343)0C(343)eD(3)9sA(343)sCKMAT(343) s TEMPP(3)
COMMON/COMS/NeNPL1+DLM(17)

DIMENSION SCRACH(343)

IF (N=2) 1lusl0slad

1u DO 40 1 143

OO0 30 U = 143

AlCLedy = B(IsJ)

TEMP(1s4J) = AA(I4J)

DO 20 K = 143

ACToedy = CUI¢K)XEHIKeJI+A(T o)

20 TEMP(TeJ) = CUIa)FEF(KeJI+TEMP(T o)

33U CKMAT(IeJd) = A(led)

40 CONTINUE

50 CALL MXINV

00 80 I = 143
DO 7C J = 143
AACTeJ) = Do

DO 6C K = 143

60 AA(IsJ) A(T«K)¥RTEMP(KsJ)+AA(T o J)

70 CONTINUE

80 CONTINUE

DO 110 I = 143
E(6el) = —AA(341)
E(4+1) = =~AA(101])
TEMPP(I) = C,

DO 100 U = 1,43

1o TEMPP(I])

CUI e J)*SMLHH(U)+TEMPP (1)

H15
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120

130

140

160

170

180

1590

200

210

220

230

250

DO 130 I = 1,43

PHI(241) = O

DO 120 U = 143

PHI(241) = A(LsN)#D(J)+PHI(241)
CONT INUE

GO TO 9999

MN = (N—=1)%3=2

DO 160 J = 143
TEMP(3¢J) = E(MN+24¢J)
A{3ed) = B(3eJ)
TEMP(2+J) = E(MN+1e¢J)
A(2¢J) = B(2eJ)
TEMP(1+¢J) = E(MNsJ)
A(leJd)y = B(1leJd)

DO 190 I = 143

DO 180 J = 143

DO 170 K = 143

A(led) = CUIWRKINTEMP(KeJ)+A(T+J)
CONT INVE

CONT INVE

CALL MXINV

DO 230 1 = 143

DO 220 J = 143

TEMP(IsJ) = O

DO 210 K = 143

TEMP(1eJ) = A(TeK)I*AA(KsJ)+TEMP(T4J)
CONTINUE

CONT INUE

M = 3#N=2

DO 250 I = 143
E(M+241) = ~TEMP(341)
E(M+141) = =TEMP(241)

E(Mel)y = ~TEMP(141) H16




260

270

280

290

9999

DO 270 1

TEMPP (1)

PHI(Ns I

DO 260 J

It

TEMPP (1)

D(Iy = DI

i

DO 290 1

DO 280 J

#

1]

PHI(Ns 1)

CONTINUE

P1=PHI(Ns1l)

P2=PHI (Ns2)

P3=PHI (N+3)

RETURN

END

C{IaJ)¥PHI(N=1eJ)+TEMPP (1)

~TEMPP (1)

1¢3

143

A(TaJ)HD(U)+PHI(Ne 1)

H17



CTEST

160

9999

SUBROUTINE TEST

COMMON/COM3/SMLHH(3) +DUM1(7010)

COMMON/COM4/E(3008¢3)¢PHI (100w 93) ¢DUMZ2(T78)

COMMON/COMS/NsDUM3 (5) s CONSTsDUM4G (2) +ER11EP2EP3LUMB(7)

M = 3#N-=2

—
m
0]
=<
1]

ABS(1e~E(Me1)-E(Ms2)=~E(Me3)~PHI(Ns1))

TERMZ = ABS(1e—E(M+191)=E(M+142)=E(M+143)=pHI(Ns2))

TERM3 ABS(1e=E(M+241)=E(M+242)=E(A44+242)=PHI (N1 3))

IF (TERM1-EP1)

IF (TERMZ2-EPZ2)

IF (TERM3-EP3)

CONST = =1le

GO TO 9999

CONST = Qo

RETURN

END

1¢10U10
241000 l0

3410010

H18




CwWNSUB
FSUBROUTINE WNSUB
DIMENSION AAA(3).88B(3)
COMMON/COM3/SMLHH(3) + V(100U s WLST(100C0e3) s w(1ULOs3) e TEEKSI(10)
COMMON/COM4/E(300043) e PHI(100043)4H{393)sEF(343) ¢ TEMP(343) e XH(51)
COMMON/COMS/NesNPL1 s PCCsDUM2(1C)1EPPLsEPP2srPP3sDUMZ(3)
NPL1=N
DO 1G I = 143
10 W(NeI) = le
PCC = -1

35 N = N=1

TERM1 = W(Ns1)
TERMZ2 = W(Ns2)
TERM3 = W(N«3)

MN = 3%N-2

DO 50 I = 143
TEMP(34I) = E(MN+241)
TEMP(2e1) = E(MN+141)

50 TEMP(1s1) = E(MNeI)

DO 70 1 = 143

W(NeI) = O

DO 60 U = 143

60 W(Ns 1) TEMP(T e J)¥WI(N+1eJ)+WINeT)

70 W(NsI) = W(NsII+PHI(NI)
IF (N=2) 75475420
20 1IF (PCC) 3043043
30 IF (ABS(TERMI=-W(Ns1))-EPP1) 1414100
1 IF (ABS(TERM2=W(Ns2))-EPP2) 2424100
2 IF (ABS(TERM3-W(Ns3))—-EPP3) 343+100
100 PCC = +1
3 IF (N=2) 999949993435
75 DO 90 1 = 143

H19
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80

90

9999

BBB(I) = Qe

DO 80 U = 143

AAA(TY = HUIeJI®W(24J)+AAACT)
BBB(1Y) = EF(TsJ)%*W(3sJ)+BBB(1)
W(lel) = BBB(II+AAA(I)+SMLHH(I)
GO To 20

RETURN

END

H20




CvMNSsSUB

SUBROUTINE VMNSUB (%)

COMMON/COMI/DUMI(1019)oEKSISoEKSIMobKSIoTDAoTDDAqDETAEoDETAoDUME(3
1)4ELSI
COMMON/COM3/SMLHH(3) «V(1000) ¢+ WLST(1000¢3)sw(1000¢3)sTEEKSI(10)
COMMON/COMS/DUM3( 18) ¢ NVMN

TERM1I = EKSI*#DETA/DKSI

TERMZ DETA/4e

i

DO 10 I = 241000

10 V(I) = V(I=1)—(TERMI1+TERMZ2)* (W(Te1)4+W(I—-101))+{TERMI=-TERM2)#* (WLST(
1Tel)+WLST(I=-10¢1))
GO TO (29499) ¢« NVMN

29 DO 11 1

11000

1¢3

Do 12 u

12 WLST(TleJ) = W(Isl)

11 CONTINUE

CALL woSsuB

GO TO 9999

99 RETURN 1

9999 RETURN

END

H21



cwosuB ~
SUBROUTINE wOoSuB .
COMMON/COM1/DUM(7) s Y(1000) sDUM1(12) +EKSISIFKSIM¢DKSI +DUM2(6) s MEDGE
1 +EKSI
COMMON/COMB/SMLHH(3)!V(IOOO)OWLST(1000!3)9W(100003)9TEEK51(10)
COMMON/COMS/NeNPL1+PCCosNWRITIDUM3(15)
IF (1=-MEDGE) 14241
2 EKSI = EKSIS=eS*DKSI
DO 10 I = Z2«NWRIT
10 Y(I) = Y(I=1)+1e
GO TO 3

1 EKSI = EKSI+¢5%DKSI

3 WRITE (64902)(EKSI)

902 FORMAT (1H1/SHEKSI=E168/)

WRITE (64903)

903 FORMAT (1H01IXZHFPI9X1H616X5HTHETA18X1HV19X1HY/)
WRITE (6+4904)((W(leJ)ed = 1e3)sV(I)aY(I)el = 1eNWRIT)

904 FORMAT (1H SE208)

9999 RETURN

END

H22




CMX NV
* SUBROUT INE MXINV
COMMON/COM4/DUM1 ( 12US7) ¢ A(343) yDUM2( 12)
DIMENSION S(343)
S(le1)= (A(2¢2)%¥A(3¢3)~A(243)%A(342))
S(201)==(A(2¢1)%¥A(343)~A(2+3)%A(391))
S(391)= (A(241)%A(392)~A(2+2)%A(301))
S(1e2)==(A(142)%A(393)~A(143)%A(342))
S(292)= (A(141)%¥A(393)=A(1+3)%L(341))
S(302)==(A(191)%A(2+3)=A(1+2)%A(341))
S(193)= (A(142)%A(243)=A(143)%A(242))
S(2¢3)==(A(141)%¥A(2+3)=A(143)%A(2¢1))
S(393)= (A(141)%¥A(2e2)=A(1+2)%A(241))
DETER=AC141)%S(141)+A(142)%S(2¢1)+A(143)¥S(301)
DO 11 I=143
DO 10 U=143
10 ACIeJ)=5(1+J)/DETER
11 CONTINUE
9999 RETURN

END
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